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CHAPTER-1
INTRODUCTION AND PRELIMINARIES

In recent times the study of fixed point theory has been gained an important
role because of its wide applications in proving the existence and uniqueness of
solutions of differential, integral, integro - differential and impulsive differential
equations and in obtaining solutions of optimization problems, in Approxima-
tion theory and Non-linear Analysis. Further many fixed point theorems are
used not only in various mathematical investigations but also problems in
economics, game and computer theory.

In this chapter, we mention some known definitions, propositions and some
main theorems in fixed point theory that are relevant to the content of this
thesis.

Throughout this thesis, we denote R as the set of all real numbers, R™ as
the set of all non - negative real mumbers, N as the set of all natural numbers
and C as the set of all complex numbers.

Suppose that X isca non-empty set and 7' : X — X is a self map on X. If
there is an element = € X such that Tx = x, then z is called a fixed point of

Tin X.

Section 1.1 : BANACH FIXED POINT THEOREM FOR SELF
MAPS

The fundamental work in fixed point theory is due to Banach (1922), which

«“

is famous as “ Banach Contraction Principle 7.

Theorem 1.1.1.(Banach Contraction Principle, [81]): Let (X, d) be a com-



plete metric space and 7" be a self map on X and 0 < k < 1 such that
d(Tz,Ty) < kd(z,y), ¥ z,y € X.

Then T has a unique fixed point in X. Further for any zy € X, the sequence
of iterates {T"xy} is Cauchy and its limit is the unique fixed point of 7'
Definition 1.1.2. Let X be a non-empty set and 77,75 : X — X be given

self maps on X.

1. If Thz = Tox for some x € X, then z is called a coincidence point of T}

and T5.

2. If x = Thx = Tyx for some x € X, then x is called a-common fixed point

of Ty and Ts.

3. (Jungck and Rhoades,[31]). If T1The = ToTix whenever there exists
x € X such that Thz = Tyx, then the pair (T3, T3) is said to be weakly

compatible.

Now we give the basic definition of a partially ordered set as follows:
Definition 1.1.3. A partially ordered set is a set X and a binary relation
= denoted by (X, <) such that, V a,b,c € X
1. a < a (reflexivity),
2. a = band b < a implies a = b (anti - symmetry) and
3. a = band b = ¢implies a < ¢ (transitivity).
Definition 1.1.4. Let (X, <) be a partially ordered set and z,y € X. We

say that x is comparable to y if either z <y or y < 2.



Section 1.2: G - METRIC SPACES

Dhage et al.[10,11,12,13] introduced the concept of D-metric spaces as
generalization of ordinary metric functions and went on to present several
fixed point results for single and multivalued mappings. Mustafa and Sims
[113] and Naidu et al. [93,94,95] demonstrated that most of the claims con-
cerning the fundamental topological structure of D-metric space are incorrect.
Alternatively, Mustafa and Sims [113] introduced more appropriate notion of
generalized metric space or a G - metric space and obtained robust topolog-
ical structure for this space. Later Zead Mustafa, Hamed Obiedat and Fadi
Awawdeh [116], Mustafa, Shatanawi and Bataineh [117], Mustafa and Sims
[114], Shatanawi [107] and Renu Chugh, Tamanna Kadian, Anju Rani and
B.E.Rhoades [21] obtained some fixed point theorems for a single map in G-
metric spaces.

Definition 1.2.1(Mustafa et al.[113]): Let X be a nonempty set and let

G: X x X x X — R" bea function satisfying the following properties:
(G1): G(z,y,z)=0ifx =y ==z
(G2): 0 < G(z,y,2) for all z,y € X with z # y,
(G3): G(z,z,y) < G(x,y,2) for all x,y,z € X with y # z,

(G4): G(z,y,2) = G(z,2,y) = G(y,2,2) = e symmetry in all three vari-
ables,
(G5): G(z,y,2) < G(x,a,a) + G(a,y, z) for all x,y,z,a € X.

Then the function G is called a generalized metric or a G-metric

on X and the pair (X, Q) is called a G-metric space.
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Clearly these properties are satisfied when G(z,y, z) is the perimeter of the
triangle at x,y and z in R?, further taking a in the interior of the triangle
shows that (G5) is best possible.

Definition 1.2.2 (Mustafa et al.[113]): Let (X, G) be a G-metric space in
X. A point x € X is said to be limit of {z,} iff nﬁTmG(Z,xn,a:m) =0. In
this case the sequence {x,} is said to be G-convergent to z.

Definition1.2.3 (Mustafa et al.[113]): Let (X, G) be a G-metric space and
{z,} be a sequence in X. {z,} is called G-Cauchy if and only if
l,n%rZ;LnlooG(xl./ Ty L) = 0.

(X,G) is called G— complete if every G-Cauchy sequence in (X,G) is G-
convergent in (X, Q).
Proposition 1.2.4(Mustafa et al.[113]): In a G-metric space (X, G), the

following are equivalent.
1 The sequence {z,} is G—Cauchy.

2 For every € > 0, there exists N € N such that G(z,, T, x.m) < €, for all

n,m > N.

Proposition 1.2.5(Mustafa et al.[113]): Let (X, G) be a G-metric spce.
Then the function G(z,y, 2) is jointly continuous in all three of its variables.
Proposition 1.2.6(Mustafa et al.[113]): Let (X, G) be a G-metric space.

Then for any z,y, z,a € X, it follows that
(1) if G(x,y,z) =0 thenx =y = z,
(i) G(z,y,2) < G(z,2,y) + G(z,,2),

(i) G(z,y,y) <2 G(z,7,y),



(iv) G(z,y,2) < 2 [G(z,a,a) + G(y,a,a) + G(z,a,a)].

3

Proposition 1.2.7 (Mustafa et al.[113]): Let (X, G) be a G-metric spce.

Then for a sequence {z,} C X and a point x € X, the following are equivalent.
(i) {x,} is G-convergent to x,
(17) G(zp,xn,x) — 0 as n — o0,
(171) G(xp,x,2) — 0 as n — oo,
(iv) G(Xpm, Tp, ) — 0 as m,n — o00.
Section 1.3 : PRESIC TYPE FIXED POINT THEOREMS

There are a number of generalizations of Banach contraction principle for
multivalued mappings and hybrid pair of mappings for example
(refer[9, 14, 32, 35, 44, 50, 105, 106]).
One such generalization is given by S.B.Presic [84] in 1965.
Let f : X* — X, where k > 1 is a positive integer. A point z* € X is
called a fixed point of f if z* = f(x*, 2*,...x*). Consider the k-order non linear
difference equation.
Tns1 = [ (Ton—ksts Tnpy2, - Tp1) forn=Fk— 1,k k+1. (A)
Equation (A) can be studied by means of fixed point theory in view of the fact
that € X is a solution of (A) if and only if z is a fixed point of f. One of
the most important result in this direction is obtained by Presic [84] in the
following way.
Theorem 1.3.1 (Presic et al.[84]): Let (X,d) be a complete metric space, k

be a positive integer and f : X* — X be a mapping satisfying



M=

(1.2.1.1) d(f (w1, 29, ap), f(z2, 25, Tpg1)) < D0 Gd(w, Tigq)

i=1
k

for all q, 29, , 2, 21 € X, where ¢; > 0 and Y ¢; < 1. Then there exists
i=1

a unique point € X such that f(z,x,....,x) = x. Moreover, if x1,xa, - , T}

are arbitrary points in X and for n € N, z,, 1, = f(@p, Tni1, -+ Tpgk—1), then

the sequence {z,,} is convergent and iﬁgo xn = f(limxy,, limx,, ....limz,).
Later Ciric and Presic [51] generalized the above theorem as follows.

Theorem 1.3.2 (Ciric and Presic[51]): Let (X, d) be a complete metric space,

k a positive integer and f : X* — X be a mapping satisfying

d(f(xr, o, k), f(oa, 23, @kg1)) < A max{d(z;, wig1) 1 <i <k}

for all &1, 29, , @, xp1 in X and A € [0,1). Then there exists a point x € X

such that © = f(z,z,....,x).

Moreover, if zq, x4, - -+, x; are arbitrary points in'X and for n € N,

Tnak = T(Tp, Tpy1, -+, Togk—1), then the sequence {x,} is convergent and

7{2’& x, = f(limx,, limx,, ....limz,). If in-addition, we suppose that on diag-

onal A C X* d(f(u,u,...,u), f(vs0;=..,v)) < d(u,v) holds for u,v € X with

u # v, then x is the unique fixed point satisfying x = f(x, z, ..., z).

Recently Rao et al. [42,45] obtained some Presic fixed point theorems for two

and three maps in metric spaces. Now we give the following definition of Rao

et al.[42]

Definition 1.3.3(Rao et al.[42]): Let X be a nonempty set, k a positive inte-

gerand T': X% — X and f: X — X. The pair (f,T) is said to be 2k-weakly

compatible if f(T(z,x,...,x)) = T(fz, fx, ..., fr) whenever there exists x € X

such that fo =T (z,x,...,x).

Using this definition, Rao et al.[42], proved the following theorem.



Theorem 1.3.4(Rao et al.[42]): Let (X,d) be a metric space and k be any
positive integer. Let S,7 : X?* — X and f: X — X be mappings satisfy-
ing

(1.3.4.1) d Slr o). Amax {d(fz;, frin) 1< i< 2k}

T(w2, 23, ..., Topy1)
YV x1, Loy ey Tog, Topr1 € X, where 0 <\ < 1.

S(Y1, Y2y o Yor),
(1aa2) a| U (U frn) 1 << o)

T(y27y37“'7y2k+1)
YV Y1, Y2y o Yors Yorr1 € X, where 0 <A < 1.

(1.3.4.3) d(S(u,u,...,u), T(v,v,..,0)) < d(fu, fv) V u,v € X with u # v.

(1.3.4.4) Suppose that f(X) is complete and either (f,S) or (f,T) is 2k-weakly

compatible pair.

Then there exists a unique point.p'€ X such that p = fp = S(p,p,..,p,p) =

T(p,p,.,0, D).

Section'1.4 : COUPLED FIXED POINTS

Bhaskar and Lakshmikantham [101] introduced the concept of coupled fixed
points and Lakshmikantham and Ciric [104] defined the common coupled fixed
points. Abbas et al. [55] introduced the w-compatible mapping and proved
some common coupled fixed point theorems in Cone metric spaces. Later sev-
eral authors obtained coupled fixed and common coupled fixed point theorems
in various spaces, (see for example [46,55,58,101,104]).

Definition 1.4.1(Bhaskar et al.[101]): Let X be a non-empty set. An element
(z,y) € X x X is called a coupled fixed point of a mapping F : X x X — X

if F(x,y) =2 and F(y,z) =y.



Definition 1.4.2([Lakshmikantham et al.104]): Let X be a non-empty set.

(7) An element (z,y) € X x X is called coupled coincidence point of map-

pings F: X x X — X and g: X — X if F(z,y) = gz and F(y,z) = gy.

(77) An element (z,y) € X x X is called common coupled fixed point of
mappings F : X x X — X and g: X — X if F(z,y) = g(x) = z and

Fy,z) =g(y) = y.

Definition 1.4.3(Abbas et al.[55]): Let X be a non-empty set. Let

S: X xX — X and f: X — X be mappings. Then the pair (S, f) is called
w - compatible if f(S(x,y)) = S(fz, fy) and f(S(y,z)) = S(fz, fy) whenever
there exist z,y € X with f(z) = S(z,y) and f(y) = S(y, ).

Section 1.5: FUZZY METRIC SPACES

The concept of fuzzy sets was introduced. initially by L.Zadeh in 1965 [49)].
George and Verramani[8] modified the concept of fuzzy topological spaces
induced by fuzzy metric introduced by Grabeic[64] and proved the contrac-
tion principle in the settings of fuzzy metric spaces. Many authors(see for
example[8, 40, 76, 84, 96]) have proved fixed and common fixed point theorems
in fuzzy metric spaces.

Definition 1.5.1(Schweizer et al.[15]): A binary operation % : [0,1] X

[0,1] — [0, 1] is a continuous ¢t-norm if it satisfies the following conditions:
1. * is associative and commutative,
2. * is continuous,

3.axl=uaforallacl01],



4. a*xb < cxd whenever a < ¢ and b < d, for each a,b,¢,d € [0, 1].

Two typical examples of a continuous t-norm are axb = ab and axb = min{a, b}.
Definition 1.5.2(George et al.[8]): A 3-tuple (X, M, *) is called a fuzzy metric
space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a
fuzzy set on X% x (0, 00), satisfying the following conditions for each z,y, 2z € X

and t,s > 0,

(M7) M(z,y,t) >0,

(M) M(z,y,t) =1if and only if x =y,

(Mz) M(x,y,t) = M(y, 1),

(My) M(z,y,t)« M(y,z,s) < M(x,z,t+.5),
(M5) M(z,y,.): (0,00) — [0,1] is-continuous.

Let (X, M, *) be a fuzzy metric space. For ¢t > 0, the open ball B(x,r,t)

with center z € X and radius 0 < r < 1 is defined by

B(z,rt)={ye X : M(z,y,t) >1—r}.

If (X, M, %) is a fuzzy metric space, let 7 be the set of all A C X with

x € A if and only if there exist ¢ > 0 and 0 < r < 1 such that B(z,r,t) C A.
Then 7 is a topology on X (induced by the fuzzy metric M). This topology
is Hausdorff and first countable. A sequence {z,} in X converges to x if and
only if M(x,,z,t) — 1 as n — oo, for each ¢ > 0. It is called a Cauchy
sequence in the sense of [8] if 7351010 M (2, @pip, t) = 1, for all ¢ > 0 and each
positive integer p. The fuzzy metric space (X, M, *) is said to be complete if
every Cauchy sequence is convergent.

Example 1.5.3. Let X = [0,1] and a * b = ab for all a,b € [0,1] and let M

9



be the fuzzy set on X x X x (0, 00) defined by

Je—

M(z,y,t) =€ "¢

“ for all ¢ > 0. Then (X, M, *) is a fuzzy metric space.
Lemma 1.5.4(Grabiec et al.[62]: Let (X, M, *) be a fuzzy metric space.
Then M (x,y,t) is non-decreasing with respect to ¢, for all x,y € X.
Definition 1.5.5(Lopez et al.[40]): Let (X, M, x) be a fuzzy metric space.
Then M is said to be continuous on X2 x (0, co)

if "15130 M (xp, yn, tn) = M(z,y,t), whenever a sequence { (2, Yn, t,)} in

X2 x (0,00) converges to a point (z,y,t) € X2 x (0, 00).

i.e.nlgtol0 M(zp, x,t) = nlglolc M (yn,y,t) =1 and nhj& M(z,y,t,) = M(z,y,t).

Lemmal.5.6(Lopez et al.[40]): Let (X, M, ) be a fuzzy metric space. Then

M is a continuous function on X? x (0, 00).

Section 1.6 : C* - ALGEBRA VALUED FUZZY SOFT METRIC
SPACES

In daily life, the problems in many fields deal with uncertain data and are not
successfully modeled in classical mathematics. There are two types of mathe-
matical tools to deal with uncertainties namely fuzzy set theory introduced by
Zadeh [49] and the theory of soft sets initiated by Molodstov [23] which helps
to solve problems in all areas. In [97] Thangaraj Beaula et al. defined fuzzy
soft metric space in terms of fuzzy soft points and proved some results. On
the other hand many authors proved so many results on fuzzy soft sets and
fuzzy soft metric spaces (see [27,97,98,100]).

In 2006, Ma et al. in [61] introduced a concept of C*- algebra valued metric

space and established some fixed and coupled fixed point results for mapping

10



under contraction conditions in these spaces. for example,

refer(see[18, 33,82,99, 111] ).

Recently, R.P.Agarval et al.[79] initiate the concept of C*-algebra valued fuzzy
soft metric spaces and proved some related fixed point results on this space
(vefer[17,79]).

Throughout our discussion, U refers to an initial universe, E the set of all
parameters for U and P(U) the set of all fuzzy set of U. (U, E) means the
universal set U and parameter set E, C refer to C*-algebra.

The details on C*-algebras are available in [30].

An algebra 'C” together with a conjugate linear involution map *: C' — C, de-
fined by @ — a* such that for all a,b € C, we have (ab)* = b*a* and (a*)* = a,
is called a * - algebra.

Moreover, if C' an identity element I &, then the pair (CY , %) is called a unital *
- algebra.

A unital x - algebra (Ci*) together with a complete sub multiplicative norm
satisfying @ = a* for all'@ € C is called a Banach x - algebra.

A C* - algebra is a Banach %-algebra (C,*) such that a*a = a2 for all a € C.
An element @ € C' is called a positive element if @ = @* and

o(a) € R(C)* is set of non-negative fuzzy soft real numbers, where o(a) =

{A € R(C)* : M — &, is non-invertible}. If @ € C is positive, we write it as

N

> 0c.

Using positive elements, one can define partial ordering on C' as follows:

a = b if and only if 6(3 < b—a. Each positive element 'a’of a C*-algebra C has
a unique positive square root. Subsequently, C' will denote a unital C*-algebra

with the identity element 7, & Further, é+ is the set {a € (~]C~v =< a} of positive

11



element of C.

A C*-algebra valued Fuzzy soft metric space is defined in the following .
Definition 1.6.1 (Ravi et al.[79]): Let ¢ C E and E be the absolute

fuzzy soft set that is Fg(e) = 1 for all e € E. Let C denote the C*-algebra.

The C*-algebra valued fuzzy soft metric using fuzzy soft points is defined as a

mapping de: ExE—C satisfying the following conditions.

(My) 05 = d(F,,, F.,), for all F,, F,, € E,

(Afl) d (F617F ) O 61:F€27
(M) de(F.,, F.,) = d(F.,, F.,),

(Ms) de(F.,, F.y) = des(Fyy, Fyy) + des(Fuy, Fuy) ¥ Fofs Foy, Fuy € E.

€3

The fuzzy soft set E with the C*-algebra valued fuzzy soft metric d,- is called
the C*-algebra valued fuzzy soft metric space. It is denoted by (E C, d;) It
is obvious that C*-algebra valued fuzzy soft metric generalize the concept of

fuzzy soft metric spaces, replacing the set of fuzzy soft real numbers by C..

Definition 1.6.2 (Ravi et al.[79]): A sequence {F.,} in a C*-algebra valued
fuzzy soft metric space (E, C, d,-) is said to converges to F,, in E with respect
to C, if ||d(F,,, Fy)|lg — 05 as n — oo that is for every 0z < & there
exists Og <0 and a positive integer N = (€) such that ||d(F,,, F.)|| <&
implies that ||uf, (s) — pf (s)|| <€ whenever n > N. It is usually denoted
as lim F,, = F,.

n—c0

Definition 1.6.3 (Ravi et al.[79]): A sequence {F,,} in a C* - algebra val-

ued fuzzy soft metric space (E C, d;*) is said to be Cauchy sequence, if for

12



every f]é < € there exist f)@ < 6 and a positive integer N = N(€é) such

that ||de(Fe,, Fe,,)

| < 0 implies that [|ug,, (s) — pf,, (s)| < € when-
ever n,m > N. That is ||d(F.,, F.)|le — 05 as n,m — co.

Definition 1.6.4 (Ravi et al.[79]): A C*-algebra valued fuzzy soft metric space
(E .C, d;*) is said to be complete, if every Cauchy sequence in £ converges to
some fuzzy soft point of E.

Example 1.6.5 (Ravi et al.[79]): Let C € R and E C R, let E be absolute
fuzzy soft set, that is E(e) = 1 for all e € E, and C = My(R(A)*), define
de: Ex E— C by

- 1 0
de-(Fe,, Fey) =
0.
where i = inf{|ug, (s) — pf, (s)|/s € C}and Fe,, Fe, € E. Then d is a
C* - algebra valued fuzzy soft metric and (E, C, d;*) is a complete C* - algebra
valued fuzzy soft metric space by the completeness of R(C)*.

Lemma 1.6.6(Ravi et al.[79]): Let C' be a C*-algebra with the identity

element 75 and & be a positive element of C. If @ € C' is such that ||| < 1

then for m < n,

we have lim S77_, (@) (@) = Iol|(x)]? (l“f““;‘) .................... (1)
and Y7 (@)F7(a)F — 0g as m — 00wrererine. (I1)

Lemma 1.6.7 (Ravi et al.[79]): Suppose that C' is a unital C*-algebra with

unit 1.
(i) If @ € Cy with [|a|| < & then I — a is invertible and ||a(I — a)~!|| < 1,
(#4) suppose that a, beC with a,b > ()é and ab = ba then ab = ()@,

(#1i) C" we denote the set {a € C/ab=baVbe C}. Letae C', ifb,ée C

13



with b= ¢>=0 and [ —a € C~'jr is an invertible operator, then

(I—a)'b = ([—a)™

™

Notices that in C*-algebra, if 0 < @, b one can’t conclude that 0 < ab. Indeed,

consider the C*-algebra My(R(C)*) and set

_ F(a) Fe(a) 0.3 0.1
= —
F.,(a) F.(b) 0.1 0.2
~ Fcl C Fez C 0.4 0.5
and b= (©) () —
w(c) Fe(d) 0.5 0.6
then clearly @ 0and b > 0 but a,b € My(R(C)*), while ab 0.

Section 1.7: COMPLEX VALUED METRIC SPACES

Azam et al.[2] introduced the concept of a complex valued metric space and ob-
tained sufficient conditions for the existence of ¢ommon fixed points of a pair of
mappings satisfying a contractive type condition. Subsequently, Rouzkard and
Imdad[29] established some common fixed point theorems for maps satisfying
certain rational expressions in complex valued metric spaces to generalize the
results of [2]. In the same way, Sintunavarat et al.[108, 109] obtained common
fixed point results by replacing the constant of contractive condition to control
functions. Recently, Sitthikul and Saejung [48] and Klin-eam and Suanoom
[19] established some fixed point results by generalizing the contractive condi-
tions in the context of complex valued metric spaces. Very recently, Ahmad
et al.[38] obtained some new fixed point results for multi-valued mappings in
the setting of complex valued metric spaces.

A complex number z € C is an ordered pair of real numbers, whose first co-

ordinate is called Re(z) and second co-ordinate is called Im(z). Let 2, 2, € C.
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Define a partial order < on C as follows:
21 3 2z if and only if Re(z1) < Re(z2), Im(z1) < Im(zs).

~

Thus z; 3 2o if one of the following holds:

Definition 1.7.1 (Azam et al. [2]): Let X be a non empty set. A function
d: X x X — Cis called a complex valued metric on X if for all z,y,z € X
the following conditions are satisfied:

(i) 0 3 d(z,y) and d(z,y) = 0 if and only if z.=y,

(ii) d(z,y) = d(y, ),

(i) d(z,y) 2 d(x, z) +d(z,y).

The pair (X, d) is called a complex valued metric space.

Let {z,} be a sequence in'X and z € X. If for every ¢ € C with 0 < ¢
there is ng € N suchthat for all n > ng,d(z,,x) < ¢, then {z,} is said to
be convergent to x and z is called the limit point of {z,}. We denote this by
iﬁ!}o“" =z orx, — xasn — oo. If for every ¢ € C with 0 < ¢ there is
no € N such that for all n > ng, d(z,,xnem) < ¢, where m € N, then {z,}
is called Cauchy sequence in(X,d). If every Cauchy sequence is convergent in
(X, d) then (X,d) is called a complete complex valued metric space.

Lemma 1.7.2(Azam et al. [2]): Let (X, d) be a complex valued metric space
and let {z,} be a sequence in X. Then {z,} converges to z if and only if
|d(x,,z)] — 0 asn — oo.

Lemmal.7.3(Azam et al. [2]): Let (X,d) be a complex valued metric space



and let {z,} be a sequence in X. Then {z,} is a Cauchy sequence if and only
if |d(z,), Tpem)| — 0 as n,m — oo.

Remark 1.7.4(Ahmad et al.[38]): Let (X,d) be a complex valued metric
space and let CB(X) be a collection of nonempty closed subsets of X. Let
T : X — CB(X) be a multi-valued map. For 2 € X and A € CB(X),

define W,(A) = {d(z,a) : a € A}.

Thus, for z,y € X. Wo(Ty) = {d(z,u) : u € Ty}.

Definition 1.7.5(Ahmad et al.[38]): Let (X,d) be a complex valued metric
space. A nonempty subset A of X is called bounded from below if there exists
some z € C such that z =3 a for all a € A.

Definition 1.7.6(Ahmad et al.[38]): Let (X,d) be a complex valued metric
space. A multivalued mapping F : X — 2¢ is called bounded from below if
for each x € X there exists z, € C such that z, = u for all u € Fx.
Definition 1.7.7(Ahmad et al.[38]): Let(X,d) be a complex valued metric
space. The multi-valued mapping 7' :"X — C'B(X) is said to have the lower
bound property (L.b.Property) on(X,d) if for any z € X, the multi-valued
mapping F, : X — 2¢ defined by F,(y) = W,(Ty) is bounded from below.
That is for 2,y € X, there exists an element [,,(Ty) € C such that I,(Ty) = u,
for all u € W,(Ty), where [,(Ty) is called a lower bound of T associated with
(z,9).

Definition 1.7.8(Ahmad et al.[38]): Let (X,d) be a complex valued metric
space. The multivalued mapping T': X — C'B(X) is said to have the greatest
lower bound proerty (g.l.b.Property) on (X, d) if the greatest lower bound of
W.(Ty) exists in C for all z,y € X. We denote d(x, T'y) by the g.1.b.Property

of W,(Ty). That is d(z, Ty) = inf{d(z,u) : u € Ty}.
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Definition 1.7.9(Kamaran et al.[102]): Let f: X — X, S : X — CB(X).

f is said to be S-weakly commuting at z € X if f?x € Sfx.

Section 1.8 : COMPLEX VALUED S-METRIC SPACES

In 2011, Azam et al.[2] introduced the concept of a complex valued metric
space and obtained sufficient conditions for the existence of common fixed
points of a pair of mappings satisfying contractive type conditions. Later
several authors proved fixed and common fixed point theorems in complex
valued metric spaces, for example(refer[3,29, 34, 46, 48, 54, 68,87,108]). On
other hand the concept of S-metric spaces was introduced by S.Sedghi[91].
Later several authors proved fixed point results in S-metric spaces for example
(refer[39, 47,53, 71,90, 92].

Recently Nabil et al.[70] introduced-the concept of Complex valued S- metric
spaces and proved common fixed point theorem in Complex valued S-metric
spaces.

Definition 1.8.1(Sedghi et al.[91]): Let X be a non-empty set.

A S-metric on X is a function S : X? — R* that satisfies the following

conditions for all z,y, z,a € X.
(S1) S(z,y,z) =oif and only if z =y = 2,

(52) S(x,y,2) < S(x,z,a)+ S(y,y,a) + S(z, 2,a).

The pair (X, S) is called a S-metric space.

Definition 1.8.2(Nabil et al.[70): Let X be a non-empty set. A complex
valued S-metric on X is a function S : X? — C that satisfies the following

conditions, for all z,y,2,a € X :
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(i) S(z,y,z) =0if and only if 2 =y = z,
(iid) S(@,1,2) 3 S(z,2,0) + Sy, y,a) + S(z, 2, 0).

The pair (X, 5) is called a complex valued S-metric space.
Example 1.8.3: Let X = C. Define S : C* — C hy:
S(z1, 22, 23) = [|Re(z1) — Re(z3)| + |Re(z2) — Re(z3)|] + || Im(z1) — Im(z3)] +
[Im(z9) — Im(z3)]]. Then (X, S) is a complex valued S-metric space.
Definition 1.8.4(Nabil et al.[70]): If (X,S) is called a complex valued

S-metric space, then

(1) A sequence {z,} in X converges to z if and only:if for all € such that
0 < ¢ € C, there exists ng € N such that for all n > ng, we have

S(Zp, Tn,x) < € and we denote this by-lim z,, = x.
n—00

(2) A sequence {z,} in X is called a Cauchy sequence if for all € such that
0 < e € C, there exists ng € N such that for all n,m > ngy, we have

STy Ty Tp) < €.

(3) An S-metric space (X,S) is said to be complete if for every Cauchy

sequence is convergent.

Lemma 1.8.5(Nabil et al.[70]): Let (X,.S) be a complex valued S-metric
space and {z,} be a sequence in X. Then {x,} converges to z if and only if
|S(2p, Tn, )| — 0 as n — co.

Lemma 1.8.6(Nabil et al.[70]): Let (X, S) be a complex valued S-metric
space and {z,} be a sequence in X. Then {z,} is a Cauchy sequence if and

only if |S(Zn, Zp, Trym)| — 0 as n — oo and m — oo .
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Lemma 1.8.7(Nabil et al.[70]): Let (X,.S) be a complex valued S-metric

space. Then S(z,z,y) = S(y,y,z) for all z,y € X.

Section 1.9: S, - METRIC SPACES

In 2012, Sedghi et al.[91] introduced the notion of S-metric space and
proved several results. On the other hand the concept of b-metric space was in
troduced by Czerwik[8]. Recently Sedghi et al.[89] defined S,-metric spces by
using the concept of S and b-metric spaces and proved common fixed points of
four maps in S,-metric spaces. Later several authors proved fixed and coupled
fixed point results in Sy-metric spaces for example (refer[43,73.,88,110]).

Definition 1.9.1 (Sedghi et al.[89]): Let X be a non-empty set and b > 1
be given real number. Suppose that a mapping Sj : X* — R* be a function

satisfying the following properties :

(Spl) 0 < Sp(z,y,2) for all 2, y,2 € X with x £y # z,

(Sp2) Sp(z,y,2) =0 =y =2z,

(Sp3) Sp(w,y,2) < b(Sp(z,x,a) + Sp(y,y,a) + Sp(z, z,a)) for all z,y,z,a € X.

Then the function Sy is called a Sy-metric on X and the pair (X, Sp) is called
a Sp-metric space.

Remark 1.9.2 (Sedghi et al.[89]): It should be noted that, the class of
Sp-metric spaces is effectively larger than that of S-metric spaces. Indeed each
S-metric space is a Sy-metric space with b = 1.

Following example shows that a Sy-metric on X need not be a S-metric on

X.
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Examplel.9.3(Sedghi et al.[89]): Let (X, S) be a S-metric space, and
Su(x,y,2) = Sp(z,y,z)?, where p > 1 is a real number. Note that S, is a
Sy-metric with b = 22~V Also, (X, S,) is not necessarily a S-metric space.

Definition 1.9.4(Sedghi et al.[89]): Let (X,S,) be a S,-metric space.
Then, for z € X, r > 0 we defined the open ball Bg(z,r) and closed ball

Bg[x,r] with center x and radius r as follows respectively:

Bs(z,r)={y € X : Sp(y,y,x) < r},

Bslz,r] ={y € X : Sp(y,y,x) <r}.

Lemma 1.9.5 (Sedghi et al.[89]): In a Sy-metric space, we have

Sb('rv xz, y) S bSb(y7 Y, I)

and

Sy(y,y,2) < bSy(x,2,y).

Lemma 1.9.6(Sedghi et al.[89]): In a_Sy-metric space, we have
Sb(.'L', €, Z) < 2bSb(£7 €, y) + bQSb(y7 Y, Z)

Definition 1.9.7(Sedghi et al.[89]): If (X,S,) be a Sp-metric space. A

sequence {w,} in X is said to be:

(1) Sp-Cauchy sequence if, for each € > 0, there exists ny € N such that

Sp(Tpy Ty T) < € for each m,n > ng.

(2) Sp-convergent to a point z € X if, for each € > 0, there exists ny € N
such that Sy(zy,, x,, x) < € or Sy(x,,x,x,) < € for all n > ny and it is
denoted by lim z, = z.

o0

n—
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Definition 1.9.8(Sedghi et al.[89]): A S,-metric space (X, S,) is called
complete if every S,-Cauchy sequence is Sy-convergent in X.
Lemma 1.9.9 (Sedghi et al.[89]): If (X,S,) be a Sy-metric space with

b > 1 and suppose that {z,} is a Sy-convergent to x, then we have

(Z) %bsb(ywrv I) S lim inbe(:’;’?yz'Tn)

< lim sup Sy(y, v, 2,) < 2bS,(y, y, z) and

) b%Sb(Lx,y) < lim inf Sy(2y, Tn, )

< lim sup Sy(Tn, Tp,y) < V2Sy(z, 1, y) for ally € X

n—oo

In particular, if z = y, then we have lim Sy(x,, z,,y) = 0.

n—00

Section 1.10 : COMPLEX VALUED S, - METRIC SPACES

Recently N.Priyobarta et al.[72] inspired by the concept of Sy-metric spaces
introduced the concept of Complex valued Sy-metric spaces and proved some
fixed point theorems.

Definition 1.10.1(Priyobarta et al.[72]): Let X be a non empty set and

b > 1 be a given real number. Suppose that a mapping S : X? — C satisfies
(CSp1) 0= S(z,y,2) for all z,y,2 € X with x #y # 2 # x,

(CS2) S(v,y,2) =0 =y =2z

(CSp3) S(x,z,y) = S(y,y,z)for all z,y € X,

(CSpd) S(z,y,2) 2b(S(z,z,a) + S(y,y,a) + S(z,z,a)) for all z,y,z,a € X.
Then, S is called a complex valued S, -metric and (X,S) is called a

complex valued S,-metric space.

21



Definition 1.10.2(Priyobarta et al.[72]): Let (X, S) be a complex valued

Sy-metric space, let {x,} be a sequence in X.

(2) {x,} is a complex valued Sy-convergent to z if for every a € C with
0 < a, there exists k € C such that S(x,,2z,,z) < a or S(z,z,2,) < a

for all n 7 k and denoted by lim x,, = x.

(77) A sequence {x,} is called complex valued S, Cauchy if for every a € C
with 0 < a, there exists k € C such that S(z,,2,, xnm) < a for each

n,m > k.

(21) If every complex valued Sy-Cauchy sequence is complex valued
Sy-convergent in (X, S), then (X,5) is said to be complex valued S,

complete.

Proposition 1.10.3(Priyobarta et al.[72]): Let (X, S) be a complex valued
Sp-metric space and let {z,} be a sequence in X. Then (X,S) is complex
valued Sy-convergent to x if and only if |S(x,, z,, )| — 0 as n — oo or
|S(x,z,2,)] — 0asn — oo .

Theorem 1.10.4(Priyobarta et al.[72]): Let (X, S) be a complex valued
Sy-metric space, then for a sequence {,,} in X and a point x € X, the following

are equvalent
(1) {z,} is a complex valued S, convergent to .
(2) |S(xn, zp, z)| — 0 as n — oc.

Theorem 1.10.5(Priyobarta et al.[72]): Let (X, S) be a complex valued S-

metric space and {z,} be a sequence in X. Then {z,} is complex valued S,
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Cauchy sequence if and only if |S (@, T, 2;)| — 0 as n,m,l — occ.

Section 1.11 : « - ADMISSIBLE FUNCTION

Samet et al. [16] introduced the concept of a-admissible mappings and Salimi
et al.[77] modified the concept of Samet et al. [16].

Definition 1.11.1(Samet et al.[16]): Let X be a non-empty set and 7" be
a self-mapping on X and let o : X x X — R™ be a function. T is said to be
a-admissible mapping if x,y € X, a(z,y) > 1= d(Tz,Ty) > 1.

Definition 1.11.2(Karpinar et al.[26]): Let..X be a non-empty set and T
be an a-admissible mapping on X. T is said to be a triangular a-admissible
mapping if z,y,z € X, a(x,y) > 1 and a(y,z) > 1= a(z,z) > 1.

Definition 1.11.3(Salimi et al.[77]): Let X be a non-empty set and 7" be
a self-mapping on X and a,9: X x X — RT be two functions. Then T is
an a-admissible mapping with respect to 7 if z,y € X, a(z,y) > n(z,y) =
o(Tx,Ty) > n(Tx, Ty).

Definition 1.11.4(Hussain et al.[69]): Let U be the family of non-decrasing

functions ¢ : R* — R such that ) ¢"(¢t) <t for each ¢ > 0.

n=1

Section 1.12: DISLOCATED QUASI »-METRIC SPACES

Hitzler [75] and Hitzler and Seda [74] introduced the notion of dislocated
metric spaces and generalized the celebrated Banach contraction principle in
such spaces. Zeyada et al. [28] initiated the concept of dislocated quasi metric
spaces and generalized the results of Hitzler and Seda[74] in dislocated quasi

metric spaces. The notion of b-metric spaces was introduced by Czerwic [85]
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in connection with some problems concerning with the convergence of non
measurable functions with respect to measure. In the year 2015, Klin-eam
and Suanoom [20] introduced the concept of dislocated quasi b-metric spaces
based on the concepts of b-metric spaces [85] and quasi b-metric spaces [63]
and provided some fixed point theorems by using cyclic contractions. Later
several authors worked on dislocated quasi b-metric spaces and obtained fixed
and common fixed points using various contraction conditions for single map
and two maps.

Definition 1.12.1(Klin-eam et al.[20]): Let X be a non-empty set and
k > 1 be a real number then a mapping d : X x X — R is called dislocated

quasi b-metric if V z,y, 2 € X
(d1) d(x,y) = d(y,z) = 0 implies that = =y,
(d2) d(x,y) < k[d(z, 2) + d(z,y)].

The pair (X, d) is called dislocated quasi b-metric space.

Definition 1.12.2(Klin-eam‘et al.[20]): A sequence {z,} is called dislo-
cated quasi b-convergent in (X, d) if 7{2& d(zy,x) =0= T{Lrgc d(z,x,). Then x
is called the dislocated quasi b-limit of the sequence {z,}.

Definition 1.12.3(Klin-eam et al.[20]): A sequence {z,} in
dislocated quasi b-metric space (X, d) is called Cauchy squence if
leToo d(Tm,2z,) =0 = ml};rlzoo A(zy, Tn).

| Definition 1.12.4(Klin—eam et al.[20]): A dislocated quasi b-metric space
(X,d) is said to be complete if every Cauchy sequence in X convergent to a

point of X.

Lemma 1.12.5(Klin-eam et al.[20]): Let(X,d) be a dislocated quasi b-
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metric space and {z,, } be dislocated quasi b-convergent to z € X and y € X be
arbitrary. Then d(z,y) < lim inf d(z,,y) < lim sup d(z,,y) < kd(z,y)
and

7y, ) < lim inf d(y,z,) < lim sup d(y, z,) < kd(y, z).

Note 1.12.6: ﬁd(r,y) < max{d(z, 2),d(z,y)} for all z,y,z € X.

SYNOPSIS OF THE THESIS

This thesis is divided into seven chapters.
Chapter 1: Introduction and Preliminaries

In this Chapter we present some known basic notions like fixed and cou-
pled fixed points, concepts regarding to a --admissible maps, Presic type and
Suzuki type fixed point theorems in metric; G - metric, complex valued metric,
fuzzy metric, C*-algebra valued fuzzy soft metric, complex valued S-metric,
Sp-metric, complex valued Sp-metric and dislocated quasi b-metric spaces and
as well as contents of the thesis.

Chapter 2: Common Fixed and Coincidence Point Theorems in
Some Spaces
We divide this chapter into three sections namely, Section 2.1, Section 2.2 and
Section 2.3.

In Section 2.1, first we prove a common fixed point theorem for three
expansive mappings. Our result generalizes the theorems of Zead et al.[115].
Also we prove another theorem for two jungck type expansive mappings. And
we obtain corollary for single map.

In Section 2.2, we introduce the definition of jointly 2k-weakly compatible

pairs of maps. We obtain a Presic type fixed point theorem for two pairs



of jointly 2k-weakly compatible maps in fuzzy metric spaces. We obtain two
corollaries for three and two maps respectively which are slight variations of
theorems of Rao et al.[42,45].Our main result extends the theorem of Murthy
et al.[76]. We also give an example to illustrate our main theorem.

In Section 2.3, we obtain a coincidence point theorem for two pairs of hybrid
mappings in complex valued metric spaces. Our result generalize the theorem
of Azam et al.[4].

Chapter 3: Coupled and Coincidence Point Theorems in C*-
Algebra Valued Fuzzy Soft Metric Spaces.

We divide this chapter into two sections namely, Section 3.1 and Section 3.2.

In Section 3.1, we establish the existence and uniqueness of common
coupled fixed point results for three mappings in C*-algebra valued fuzzy soft
metric spaces. Moreover, we give an illustration which presents the applicabil-
ity of the achieved results. Also we provided application to Integral Equations.

In Section 3.2, we obtain a coincidence point theorem for a hybrid pair of
single valued and multivalued mappings in complete C*-algebra valued fuzzy
soft metric spaces. An example is also given to validate our results.

Chapter 4: Unique Common Fixed Point Theorem for Four maps
in Complex valued S-metric Spaces.
In this Chapter, we prove a common fixed point theorem for four maps satis-
fying more general contractive condition using 7 functions in Complex valued
S-metric spaces. We also provide an example to illustrate our result.
Our result generalize the theorem of Naval Singh et al.[68].

Chapter 5: Common And Coupled Fixed Point Teorems in Sj-

Metric Spaces.
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We divide this chapter into two sections namely, Section 5.1 and Section 5.2.
In Section 5.1, we obtain a uniquene common fixed point theorem for two
weakly compatible pairs of mappings satisfing a contractive condition in Com-
plex valued Sp-metric spaces. we also provide an example to illustrate our
theorem. Our result generalize the theorem of N.Priyobarta et al.[72].

In Section 5.2, we obtain Suzuki type common coupled fixed point theorems
in Sy metric spaces for four maps and single map respectively. We also furnish
an example which supports our main result. Our result generalize the theorem
of Sedghi et al.[89)].

Chapter 6: A New Common Coupled Fixed Point Result For
Contractive Maps Involving Dominating Functions
In this chapter we extend the Salimi et .al.[77] Defintion from single map to
jungck type maps of which one is-a coupled map. Mainly we establish a
new common coupled fixed point theorem for contractive inequalities using
auxiliary function which dominate the ordinary metric function for two maps.
Also obtain a common fixed point for four maps. Our result generalize the
theorem of N.Hussain et al.[69].

Chapter 7: Unique Common Fixed Point Theorem of
Integral Type Contraction For Four Maps In Dislocated Quasi b-
Metric Spaces
In this Chapter, we prove two unique common fixed point theorems using con-
tractive condition of integral type in dislocated quasi b-metric spaces. In the
first theorem, we used the continuities of all four mappings and commutativity
of two pair of maps. In the second theorem, we replaced the commutativity

and continuity of maps in Theorem 7.4. by weakly compatible pairs and com-
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pleteness of one of the range set of maps.
Our result extends the theorem of M.U.Rahman et al.[67]. We also give two
examples to support our theorems.

After Chapter 7, we give a list of references used for the preparation of this

thesis.
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CHAPTER 2

COMMON FIXED AND COINCIDENCE POINT THEOREMS IN SOME
SPACES

We divided Chapter 2 into three sections, namely, Section 2.1., Section
2.2. and Section 2.3. The main aim of the Chapter is to prove common fixed
point theorem in G - metric spaces, a unique common fixed point theorem
for four mappings satisfying Presic type condition in fuzzy metric spaces and
concidence point theorem for two pairs of hybrid mappings in complex valued
metric spaces.

SECTION 2.1: COMMON FIXED POINT THEOREM FOR

EXPANSIVE MAPPINGS IN G-METRIC SPACES

Recently Zead et al.[115] proved the following theorems.

Theorem 2.1.1.(Zead et ak115]): Let (X,G) be a complete G-metric
space. If there exists a constant a > 1 and a surjective mapping 7" on X, such

that for all z,y,z € X
(i) G(Tx,Ty,Tz) > aG(x,y, z).

Then T has a fixed point.
Theorem 2.1.2.(Zead et al.[115]): Let (X, G) be a complete G-metric space,
T : X — X an onto and continuous mapping satisfying the following condition

forall z € X
(i) G(T(x), T*(x), T*(x)) > aG(z, Tz, T?x)

where @ > 1. Then T has a fixed point.
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In this section, we obtain a common fixed point theorem for three expansive
mappings and a unique common fixed point theorem for two Jungck type
expansive mappings in G-metric spaces. Our main theorem generalise the
Theorem 2.1.1 and Theorem 2.1.2.

Now we give our Main Theorem.
Theorem 2.1.3. Let (X, G) be a complete G- metric space. If there exist

a constant ¢ > 1 and surjective mappings A, B and C' on X such that

G($> Y, 2)7 G(I7 A-T., CZ),
G(AT7 By7 CZ) > gmax
G(y, By, Av), G(z,C=, By)

for all z,y,z € X, then

(a) Aor Bor C has a fixed point in X,

(or)
(b) A, B and C has a unique common fixed point in X.

Proof: Let xq € X, there exist x1, 9, 23 € X such that

To = Ary, 11 = By, 19 = Cx3.

By induction we have

T3 = AT3n41, T3n1 = BT3nyo, Tanz = C3pq3,n =0,1,2... .
If 23,41 = 23, then Az = x where x = x3,.

If 340 = 23,41 then Bx = 2 where © = x3,11.

If 253,43 = T340 then Co = x where x = 23, 19.

Assume that z,, # 2, for all n.
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Denote d,, = G(zy, Xpi1, Tnia)-

d3p—1 = G(x?mfh CL'3ml'3n+1)
= G(Cmam Arznia, Bx3n+2)
G(I3n+17 T3n42, Isn)7 G(I3n+1, T3n, Isn—l),
> gmax
G(13n+27 T3n41, $3n)7 G(l‘3m L3n—1 l’3n+1)
= ¢max {d3n7 d3n717 d3n> d3n—1} .

Thus we have ds, 1 > qds, so that

dsp < kds,—, where k= % <1 (1)

d3, = G(%m T3n+1, LL"3n+2)
= G(Ax3n+17 Bz, C$3n+3)
G(I3n+1; T3n+25 I3n+3)7 G(I3n+1; T3n, I3n+2);
> gmax

G(Z3n+27 L3015 $3n)7 G(I3n+37 T3n+2, $3n+1)

= gmax {d3n+17 d3n7 d3n7 d3n+1} .

Thus we have dz, > qdsq34 so that ds,q < kda, (2)

d3pi1 = G(W3n+1, L3n+25 1‘3n+3)
= G(Bxsnta, Csngs, ATsnig)
G($3n+47 T3n+2, 933n+3)7 G(333n+47 T3n+3, I3n+2)
> gmax
G($3n+27 T3n+1, 1’3n+3)7 G(T3n43, T3n42, Tant1)

= ¢max {d371,+2> d3n+2~, d3n+17 d371,+1} .

Thus we have ds,1+1 > qdsnio so that ds,io < kdsnin (3)

From (1), (2) and (3) we have d,, < kd,,—1,n =1,2,3....
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From (G3) we have
G(xm T, l'nJrl) < G(xnv T+, xn+2)
S kG(xnfl-, T, xn+l)

< KG(2p_9,Tn_1,2n)

S k"G(l’m X1, .2'2).
Now using (Gs), for m > n
G(Im Tn, Im)
g G(]wu T,y In+1) + G(I7L+17 Tn41, xn+2) + G(xn+27 T2, xn+3) + o + G(:tm—l: Tm—1, xm)

< (k" + k,n+1 + kn+2 + ..+ km—l) G(xo,l'l,l'z)

< lliLkG(,’I,‘U7,7,‘1,,7,’2)

— 0 asn— ocom — oo.

Hence {x,} is G-Cauchy. Since (X, ) is complete, there exists p € X such
that {x,} is G-convergent to p.

Now

G(Ap, ¥3n11, T3ns2) = G(Ap, Brgyyo, Cznys)

> gmax G(p, T3ns2, Tanss), G(p, Ap, Tania),
G(@3n+2, Tans1, Ap), G(Tan4s, Tant2, Tant1)

letting n — oo , we get
G(Ap,p,p) = ¢ max{0, G(p, Ap,p), G(p, p, Ap), 0}.
Thus G(Ap,p,p) =0 so that Ap = p.

G(xiim BP, CCSnJrZ) = G(ACCSnJrlv pr Cx3n+3)

G(z3n11,p, 5!73n+3)7 G(I3n+17 T3, T3n+2),
> ¢ max

G(p7 Bp7 x3n)7 G(z3n+37 T3n+2; Bp)
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letting n — oo we get

G(p, Bp,p) > ¢ maz{0,0,G(p, Bp,p),G(p, Bp,p)}-

Thus G(p, Bp,p) = 0 so that Bp = p.

G(23n, T3041,Cp) = G(A$3n+1, Bz, Cp)
G(I37t,+1’ T3n+2, p)’ G(I3n+17 T3n, Cp)~
> gmax
G($3n+27 T3n+1, 333n)7 G(ZL Cp, 333n+1)

letting n — oo we get

G(p.p,Cp) =z ¢ maz{0,G(p,p, Cp),0,G(p,Cp, p)}.
Thus G(p, p, Cp) = 0 so that Cp = p.

Thus p is a common fixed point of A, B and C.

Now consider

G(p,p,p') = G(Ap, Bp,Cp')
> q max{G(p,p.p), G(p.p, 1), 0,G(V. P, p)}
> q max {G(p,p,), 3G (p,p, 1)} since G(p,p,p') < 2G(p,p',p)
=q G(p,,pD).
Hence p’' = p.
Thus p is a unique common fixed point of A, B and C.

Corollary 2.1.4. Let (X, G) be a complete G- metric space. If there exist

a constant ¢ > 1 and surjective mapping 7" on X such that

G(:I;7 y7 2)7 G(:E7 T:E7 TZ)7
G(Tz,Ty,Tz) > gmax

Gy, Ty, Tx),G(2, Tz, Ty)
for all z,y,z € X, then T has a unique fixed point in X.
Proof: Let zp € X. There exists a sequence {z,} in X such that

Ty =T2p1,m=0,1,2......
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If 2, = 41 for some n then Tz = z, where v = x,,41.
Assume that z, # x,; for all n.
The rest of the proof follows as in Theorem 2.1.3
Theorem 2.1.5. Let (X, G) be a G- metric space and A, f : X — X be
satisfying

(2.1.5.1)

G(fx, fy, f2),G(fz, Az, f2)
G(fy, Ay, fz),G(fz, Az, fy)

G(Ax, Ay, Az) > gmax

for all z,y,z € X,where ¢ > 1,

(2.1.5.2) f(X) C A(X) and f(X) is a G-complete sub space of X and
(2.1.5.3) the pair (A, f) is weakly compatible .

Then A and f have a unique common fixed point .

Proof: Let zy € X. From (2.1.5.2), there exists 1 € X such that
fro = Axy = y1, say.

Inductively, there exist sequences {z,} and {y,} in X such that
frn=Az, =y,n=1,23, ...

Case(i): Suppose y, = y,1 for some n. Then fxz, 1 = Az, ;.

Thus fp = Ap where p = x,,_;. Since (A, p) is weakly compatible,

we have f?p = f(fp) = f(Ap) = Afp= A’p.

G(fAp, fp, fp), G(fAp, AAp, fp),
G(fp, Ap, fAp), G(fp, Ap, fp)
G(A%p, Ap, Ap), G(A%p, A%p, Ap),

G(A%p, Ap, Ap) > qmax

= g¢max
G(Ap, Ap, A%p).0

> qG(A%p, A%p, Ap),

34



and similarly we get G(A%p, A%p, Ap) > ¢*> G(A%p, Ap, Ap),

so G(A%p, Ap, Ap) > ¢* G(A?p, A%p, Ap) which is a contradiction.
Hence A%p = Ap. Then fAp = A%p = Ap.

Ap is a common fixed point of f and A.

Case(ii): Assume that y,, # yn41 for all n

G(yn—h Yn—1, yn) = G(Axn—la Al‘n—ly A$n)

G(ynv Yn, yn+1)7 G(Um Yn—1, yn+1)7
2> gmax
G(ym Yn—1, yn)7 G(yn+1> Yns yn)
G(ym Yn, yn+1)a G(yn—l » Yn—1, yn)7
> gmax )

LG (WYn1,Yn=1,Yn): GWn, Yn, Y1)
since G(Ynt1,Yn—1,Yn) = G(Yn—1, Yn, Yn+1) and
GWn-1,Yn-1,Yn) < 2 G(Yn-1,Yn, Ynt1):
Thus G(Yn—1,Yn-1,Yn > ¢ G(Yn, s Yns1)-
Hence
G (Yns Yns Yn+1) S kG (Y1, Yn1,Yn) where k = L < 1
< kG (Yn-2, Yn-2,Yn-1)

< K3G (Yn-3, Yn—3, Yn—2)

< k"G (Yo, Yo, 1)-
Now using (G5), for m < n we have
G(yn7 Yns ym) S G(yn7 Yns ynJrl) + G(yn+17 Yn+1, yn+2) + o + G(ym—lv Ym—1, yn)
< (K" + K 4 R G (yo, Y0, 1)

< %G(ymymyl)

— 0as n — oo,m — oQ.



Hence {y,} is a G-Cauchy.

Since f(X) is G-complete, there exists p,t € X such that y, — p = ft.

G(At, yn,yn) = G(At, Ax,,, Ax,,)
> g G(P,Yn+1: Yn+1), G(p, At Ynga),
GWn+1,Yn> P), G(Yns1, Yn Yn)
letting n — oo, we get
G(At,p,p) > q G(p, At,p). Thus At = p. Hence ft = At.
As in case(i), ft = At = p is common fixed point of f and A.
Uniqueness: Suppose p’ is another common fixed point of A and f.
G(p.p.p) = G(Ap, Ap, Ap')
G(p,p.p), G, pp),
0.G(p,p.p")
> qmax {G(p,p,p"), 5G(0,p,7') }

=q G, p, P

> gmax

Hence p' = p.

This part of the work was published in ‘Journal of Computer and

Mathematical Sciences’, Vol.1, No. 6, October, 2010, pp 716-720.
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SECTION 2.2: A UNIQUE COMMON FIXED POINT THEOREM FOR FOUR
MAPPINGS SATISFYING PRESIC TYPE CONDITION
IN FUZZY METRIC SPACES
In this section, we obtain a Presic type common fixed point theorem for
four maps in Fuzzy metric spaces. We also present one example to illustrate
our main theorem. Further, we obtain two more corollaries.
In 2013 Murthy and Rashmi [76] defined the following function.

Definition 2.2.1(Murthy et al.[76]): Let ¢ : [0, 1]* — [0, 1] be such that
(2.2.1.1) ¢ is increasing and continuous function in each variable,
(2.2.1.2) ¢(t,t,t,....,t) >t for all t € [0,1].

Using this function, Murthy and Rashmi[76] extended the

Theorem 1.3.4(Ch-1) to fuzzy metric spaces as follows.

Theorem 2.2.2(Murthy et al.[76]): Let (X, M, %) be a fuzzy metric space and
S,T: X% — X and f: X — X be mappings satisfying for each positive

integer k, 0 < ¢ < % and1 € RT
(2.2.2.1) M(S(wy,29,..., w01), T(22, ..., Tor, Taps1), qt)
Z d)(]\/[(ffl, f{[z, t), ey A/[(fIQk f$2k+1, t) for all L1, T2y - . Tok41 S )(7
(2.2.2.2) M(T(y1,y2, - Yor), S(Y2, Y3, -y Yort1), 4L)
> O(M(fyr, fy2, 1), ooy M(fYak, fYaria,t) for all yi,yo, . yorin € X,
(2.2.2.3) M(S(u,u,...;u), T(v,v,...,0),qt) > M(fu, fv,t) for all u,v € X with
u#v.

Suppose that f(X) is complete and either (f,.S) or (f,T) is 2k-weakly com-

patible pair.
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Then there exists a unique p € X such that

p=fp=5/p,..p) =T(p,p, ... p)

Now we state the condition (A): tlfor}? M(z,y,t) =1 for all z,y € X.

We observe that in the proof of Theorem 2.2.2 the authors Murthy

and Rashmi[76] inherently used the condition(A).

Now we introduce the definition of Jointly 2k weakly compatible pairs

as follows.

Definition 2.2.3. Let X be a nonempty set, k a positive integer and S, 7" :
X% — X and f,g: X — X. The pair (f, S)and (g, T) are said to be jointly 2k-
weakly compatible if f(S(z,z,....,x) = S(fx.fz, ..., fx) and g(T'(z,, ...,x)) =
T(gz, gz, ..., gx) whenever there exists € X such that fo = S(x,z,...,z) and
gr =T(z,x, ..., x).

Now we extend the Theorem 2.2.2 for four maps as follows using some different
conditions.

Throughout this section assume ¢ as in Definition 2.2.1.

Theorem 2.2.4. Let (X, M, ) bea fuzzy metric space with the condition (A),
k a positive integer and S,7 : X?* — X and f,g : X — X be mappings
satisfying:

(2.2.4.1) S(X*F) C g(X),T(X?*) C f(X),

(2.2.4.2)
M(S(x1, 22, ..., w2k), T (Y1, Y2, -y Y2r), qt)
M(gay, fyr, t), M(faz, gy, t),

M(gas, fys, t), M(f2a, gya, 1),

M (gxop—1, fyon-1,1), M(fTor, gyox, t)
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vxlax% s T2k, Y1, Y25 - Yok € X7Vt > 00 <g< 17
(2.2.4.3) (f,S) and (g,T) are jointly 2k-weakly compatible pairs.

(2.2.4.4) Suppose z = fu = gu for some u € X whenever there exists a sequence

{Yorsn 22, in X such that lim yopy, = 2 € X.
n—oo

Then z is the unique point in X such that z = fz = gz = S(z,2,..,2,2) =

Proof: Suppose x1, z, ..., T, are arbitrary points in X.
From (2.2.4.1), we define
Yokron—1 = S(Xan_1, Tan, s T2kton—2) = JTopt2n—1
Yok+2n = T(I2m Tont1yeees x2k+2n—1) = fropyonforn =1,2,...

Let Qop = ]W(f$2m£1$2n+17 qt) and Qopn—1 = A/j(gIQn—l’ f‘r2nv qt) fOI" n = 17 27

Put # = L and p = min 91+F, 921+F 92’““@ .Then 0 > 1.
q H 1—y/a1

By the selection of p, we have

N 2
> (Z;zr) for n=1,2,...,2k (1)

Consider

A2k 41

= M(gxari1, fTort2, qt)

= M(S(x1, 9, ...Wop—1, Top), T (22, T3, ...T%, Tag11), qt)

> o(M(gzy, fro,t), M(fxo, grs,t), ..., M(fror, gTops1, t)

> oo, g, o1, o), since M(z,y,.) and ¢ are increasing

s ()" () (552)") grom )
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-2k 2
PR M+02k

) >t

k41 2
k+1)

2 2
—62F -9k
>0 ((155)" (55)
e\ 2
—p2k .
> <Z+02’”> ,since ¢(t,t, ...
; 2
_92k+1
Thus
S (F= 02
Qo —_
2%+1 = PR
Also
Q2k+2

= M(fropr2, 9Tar13, qt)

= M(S(x3, T4, .. Topy1, Torya), T (22, T3, .. Top, Topr1), qt)

> ¢(M(gws, frg,t), M(frs, gus,t), ...

> (g, a3, ..., Qapy1)

>0 u—6? 2 y—6° 2 12k
- #+92 ) #+93 PR M+92k

M (fronse, gTops1,t)

2 2 g2ht1 2
>\ pro2E L

o1\ 2 k1 2
>¢ p—2k+1 pu—02k+1
= pFOZFFT ) 0 \ 0T )
u—g2k+1 2
> sy
u—02k+2 2
> 0% )

Thus

1—0?hF1 2
02k +1

- f2k+2 2
Qoky2 2> m

Continuing in this way,we have

n\ 2
a"> Mie ,n=
B <u+9")
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Now consider

M (Yort2n—1, Yokt2ns t)

> M (Yokt2n-1, Y2kt2n, qt), since ¢ < 1 and M(z,y,.) is increasing

- M S(I2n—17 Tony Lan415 vy L2k+2n—35 I2k+2n—2)7
T(@on, Tons1, s Lokt 2n—2, T2kton—1), Gl

M(gzan—1, fTon, t), M(fTon, gToni1,1),

> 6 M (gwoni1, fronya, 1), M(fToni2, 9Ton 3, 1),

M (gxopson—s; fTorran—2.t): M(fToryan—2, GTorton—1,1)

> O(Qan—1, Qon, Wiy oy W2k 203, Wakron—2), Since ¢ and M are increasing

2 2 2
_g2n—1 _p2n _g2k+2n—2 .
() () o (5t promea

Y

u792k+2n72 2 #702}\"#»2"72 2 yv92k+271,72 2
2 (;5 u+02k+21172 b “+02k+2n72 PR H+92k‘,+2n72
‘u/792k:+2n72 2
> o2 FIn—2
H792k:+2n71 2
> Lt oZFFI—1
Thus
w— §2k+2n—1 2
M (Yak12n—1, Yokrons 1) > (W) (5)
Also

M (yakr2n: Yortont1, t)

> M (Yokt2n, Y2kront1, qt) , since ¢ < 1 and ¢ is increasing
S (l'2n+1, T2n+2, L2043 +++y T2k+2n—15 $2k+2n) )
=M
T (T2n, Tont1, Tant2, o Tokton—2, Tokton—1) , 4t
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M(9Tont1s foon, 1), M(fToni2, gToni1, 1),

M (goni3, fronya, t), M(fTonia; gTon i3, 1),

M (gonson—1, frorron—2,t), M(f2orion, 9Torton-1,1)

> & (Qon, Qont1, vy C2ton—2, W2ftan—1)
2 2 2
“79271 H7€2ﬂ+l 11792k+2n71
>¢ (M+92n s\ prezFt ) e \ premREEeT from (4)
M792k‘+2n71 2 M792k+2n71 2 u792k+2n71 2
2O\ gzt ) gzt ) oo (gt
2
p—g2h+2n—1 .
> (W , since ¢(t, 1,1, .., t) >t

p—g2k+2n 2
> pto2kFn )

Thus

[ — +2n 3
M (Yok+2n, Y2kt2nt1,t) > (W)
Hence from (5) and (6) we have

o 92k+n

2
m) for n=1,2,... (7)

M (y2k+n7 Y2k+n+1, t) 2 (
Now for n,p € N, we have

]\/[(ka'+7L7 Y2k+n+ps t)
> M( s« M( s x M t
Z Yaktn, Y2ktntls Yoktnt1s Y2ktnt2, ) * oo Y2k+ntp—1, Y2ktntps
2 2 . 2
_g2ktn _g2ktntl _g2ktntp—1
> <Z+92k+n> * <Z+92k+n+l) Kok (Z+92k+n+p—l> 7fr0m(7)

—1xlxl*x...xlasn — oo

=1

Hence {yog+n} is a Cauchy sequence in X.
Since X is complete, there exists z € X such that yopi,, — 2 as n — oo.

From (2.2.4.4), there exists v € X such that

2= fu=gu (8)

42



Now consider
M (S (’U,, Uy ..oy U,y U) s Yok+-2n5 qt)
=M (S (u, ..., tu, 1), T (Ton, Tons1, -, T2nt2k—2, Tont2k—1) L)

M (gu, fro,,t), M (fu, groni1,t),

M (gu, fronion—2,t) , M (fu, gk yon-1,1)

Letting n — oo and using (8), we get
M(S(u,u,,.yu,w), fu,qt) > ¢(1,1,...,1,1) > 1

which implies that

Similarly we can prove that
T(u, ugie, u,u) = gu (10)
Since (f,S) and (g,T) are jointly 2k-weakly compatible pairs, we have

fz=f(fu) = f(S(wu,..,u)) = S(fu, fu,.., fu) = S(z,2,..., ) (11)

and also
gz =T(2,2,...,2,2) (12)
Now consider
M(fz, z,qt)
=M(S(z, 2,0y 2,2), T(uy u, ..oyuyuw), gt), from (11), (8), (10)
Mgz, fu,t), M(fz, gu,t),
Mgz, fu,t), M(fz,gu,t),

M(gz, fu,t), M(fz, gu,t)
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min {Af(g/']. Z, t)/ ]\/I(fZ,’ 2, t)} ’
min{M (gz,2,t), M (fz,2,t)},
min {M (gz,2,t), M (fz,2,t)}
> min{M (gz, z,t), M (fz,z,t)}.
Thus

M (fz,z,qt) > min{M (gz,2,t), M (fz,2,t)}

Similarly, we can show that
M (927 2, qt) 2 min {A/[ (27 fZ" t) ) M (27 gz, t)}

Thus from (13) and (14), we have

min {M(fz,z,qt), M(gz, z,qt)} > min{M(z, fz,t), M(z,gz,t)}

which in turn yields from condition(A) that
z=1fz and z =gz

From (11), (12) and (15), we have

Suppose there exists 2z’ € X such that

d=fd =g =502 =T A 2
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Then from (2.2.4.2) we have

M(z, 2, qt)
=M(S(z, 2,00 2,2), T(Z, 2, ... 2, 2), qt)
M (gz, f2/,t), M (fz, 92, t),
M (gz, f2/,t), M (fz,g7,t),
M (gz, f2',t) , M (fz, g7, 1)
= (M(z,2',t), M(z,2',t),... M(2,2', 1))
> M(z,2,t)

From the condition(A), we have 2z’ = z.
Thus z is the unique point in X satisfying (16).
Now we give an example to illustrate our main Theorem 2.2.4.

[z—=y|

Example 2.2.5. Let X = [0,1];a xb = ab, M (z,y,t) = e ¢

and k= 1.
Define ¢ : [0,1]> — [0,1] as ¢(z1,z2) = min{zy, 22} Let S,7 : X* — X and
f,9: X — X be defined-as S(z,y) = 3'277;% T(x,y) = 2“;723”2 Jr =% and

gxr = %2. Now for x1, x2,y1,y2 € X, we have

2 1 O . 342
[ v, w2) = Ty, )] = [FA722 — 28

=L |32 — 2y; + 225 — 3y3)

< %maxﬂ?)xf — 2y, [225 — 33|}
Now, we have
1 7\5(11,12);7‘(1/1-,142)\
M(S(z1, ), T(y1,92), 5t) = ¢ 3t
>e 5

 max{|325 —2y; |.|229—3y3|}
= 12



2f a3
Cmax( YR -2

) ,
: 1S4 Eratrd
> mln{ e~ v e

= min{ M (gz1, fy1,t), M(fx2, gya, 1)}
= ¢(M(gxy, fyr,t), M(fx2, gya,t).

Thus (2.2.4.2) is satisfied with ¢ = 3.

&S
ACH

One can easily verify the remaining conditions of Theorem 2.2.4.
Clearly 0 is the unique point in X satisfying (16).

Corollary 2.2.6. Let (X, M, ) be fuzzy metric space with the condition
(A)and S,T: X% — X and f: X — X be mappings satisfying:

(2.2.6.1) S(X*) C f(X),T(X?) C f(X),

(2262) ]\/I(S(.Tl, T2y eny -7;21{)-, T(yl, Y2, --ey ka), qt)
> (M (foy, fyn, t), M(fao, fya, t), ..., M (fxon, [yor, 1))

vl‘l,l'g, o T2k, Y1, Y2, -5 Yok € X~Vt >0and 0 < q< 17
(2.2.6.3) f(X) is a complete subspace-of X.

(2.2.6.4) Either (f,S) or (f,T) is a 2k-weakly compatible pair. Then there exists

a unique u € X such that u = fu = S(u,u, ..., u,u) = T(u,u, ..., u,u).

Corollary 2.2.7. Let (X, M, %) be a complete fuzzy metric space with the

condition(A) and S, T : X?* — X be mappings satisfying:

(2.2.7.1) M(S(x1, 22, . Tok), T (Y1, Y2, -5 Yor): Gt)

> ¢ (M (x1,y1,t), M (22,92, 1) , ..., M (@2, Yor, 1))

Y 1, Ty ey Top, Y1, Y2y oy Yo, € X,V E>0and 0 < g < 1.
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Then there exists a unique v € X such that v = S(u, u,...,u) = T(u,u, ..., u).
This part of the work was published in ‘Advances in Analysis’,

Vol.2, No. 3, July 2017, pp 143-150.
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SECTION 2.3: COINCIDENCE FIXED POINT THEOREMS FOR
TWO PAIRS OF HYBRID MAPPINGS IN COMPLEX
VALUED METRIC SPACES

In this section, we generalize the Theorem of Azam et al.[4] for two pairs of
hybrid mappings using S-weakly commuting in complex valued metric spaces.

In 1969, Nadler [83] introduced the study of fixed points for multi-valued
contraction mapping. Later many authors, for example [2, 5,24, 38,41, 52, 54,
56,57,58, 59, 60, 64, 86] proved fixed point results in different types of general-
ized metric spaces.

Recently Azam et al.[4] proved the following theorem.

Theorem 2.3.1.(Azam et al.[4]): Let (X, d) be a complete complex-valued
metric space and let S,7 : X — C'B(X) be multi-valued mappings with g.1.b

property such that

(2.3.1.1) ad(z, Ty) + bd(y, Sz) + c%z—) € s(Sz,Ty)

forallz,y e X anda+b+c< 1
Then S and T have a common fixed point.

In this section using f is S-weakly commuting we prove a coincidence point
theorem for two pairs of hybrid mappings in complex valued metric spaces.
Our theorem is generalization of Theorem 2.3.1 of Azam et al. [4].

In this section we need the following notations of Ahmad et al. [38].

Let (X,d) be a complex valued metric space. We denote
s(z)) ={zm € C:2 3z} for zy € C and
s(a, B) = | s(d(a,b)) = bUB {z e C:d(a,b) 3 2z} fora € X and B € C(X).

<

beB
For A, B € C'(X), we denote
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acA beB
Theorem 2.3.2. Let (X,d) be a complex valued metric space.

(A, B) = ( N sa, B)) N (m s(b, A)).

Let S,T : X — C'B(X) be multi valued mappings f,g: X — X satisfying
(2.3.2.1) Sz Cg(X), Tx C f(X)V e X,

cd(fz,Ty)d(gy,Sz
(23.2.2) ad(fx, Ty) + bd(gy, Sx)+ TN ¢ (S, Ty)

for all x,y € X and a,b,c € R" such that 2a + 2b < 1,

(2.3.2.3) f is S-weakly commuting and g is T-weakly commuting,
(2.3.2.4) f(X) is complete.

Then (f,S) and (g,T') have the same coincidence point.

Proof: Let x; be an arbitrary point in X. Write y; = fx;.
Since Sz; C g(X), there exists xo € X such that y, = gzo € Sxy.
From (2.3.2.2), we have

ad(fx,, Txs) + bd(gx,, SIQ-&-W € s(Szy, Tay).

ad(fx,, Txs) +bd(gx275z1)+w € ( N S(I,T$2)>‘

1+d(foy,925) ez

d(fwy Tay)d(gwy,S
ad(fx,, Txs) + bd(gx,, le)-&-%%)m € s(z, Tay),Va € Sxy.

ad(fz,, Tzs) + bd(gz,, le)+%w € s(gxe, Txs).

cd(fxy,Txy)d(gzy,Sz
ad(fe,, Tz) + b(gay, S+ Es= € | s (dlgey,))
Since Txs C f(X), there exists some z3 € X with y3 = fx3 € Txy such that

. cd(fxy,Txy)d(gxy, Sy g
ad(fz,, Txs) + bd(gz,, Sm)-&-%‘ € s(d(gz,, fzs)).

Hence
d(gzy, fr5) 3 ad(fx), Twg) + bd(gz,, Sml)"‘w'

1+d(fzy,975)
d(yy,Y3)d(ys,
d(yy,y5) 3 ad(yy, ys) + bd(yy, o)+ stz
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[d(ya2,y3)| < ald(yr, y2)| + a|d(ya, ys)]-

[d(y2,ys)| < 7% |d(y, y2)]- (1)
Now,

cd(fxq,T2s)d(gz,,ST
ad(fxy, Txs) + bd(g,, S:E;;)+%sfggz:)3) € s(Sxsz, Txa).

ad(fxy, Txs) +bd(gx2,3$3)+w S ( N S(Sasg,y)>.

1+d(fx,,gz.
(f23,979) yETs

cd(fx,,Txy)d(gx,y,Sa
ad(fxy, Txs) + bd(g,, Sl‘g)wL%w € s(Sws,y),Vy € Ty

d(fy,Twy)d(gz,,S:
ad(fxy, Txs) + bd(gw,, STS)-&-%W € s(Sxs, fas).

cd(fxy,Txs)d(gzy,S,
ad(fay, Taz) + bi(gay, Sza)+ UReiial € Y s(dy, fau))

Since Sz C g(X), there exists some x4 € X with y, = gw4 € Sxz such that

cd(fxs,Txs)d(gxy,S:
ad(fxy, Txs) + bd(g,, Sm)-&-%yij)‘) € s(d(gz,, fxg)).

Hence

) ed(fxy,Txy)d(gzy,STs
d(gz,, frs) 3 ad(fxy, Trs) + bd(gz,, Sm)-&-%.

cd(y4,y3)d(Yq 2
Ay ys) 3 ad(yy, ys) + b (yy, ya)+ L8t

|d(ys, ya)| < bld(yz, ys)| + ld(ys, ya)]

[y, )| < 5 [ ) @)

putting h = max {ﬁ, ﬁ} and we continuing in this way, we get
‘d(ynv yn+1)| S h |d(yn717 yn)

S h2 ‘d(yn_27 yn—l)‘

< B d(yy, o)l
Now for m > n consider



)d(yn,ym)

<

d(ymyn-%—l) + d(yn+1,yn+2) F o + d(ym_Lym)

AT R 4 A R d (Y )

n—1
< [ﬁ_h] — 0 as m,n — oo.

Thus {y,} is a Cauchy sequence in X.
Since f(X) is complete, {yani1} = {fTa,41} is Cauchy, it follows that {ya,41}
converges to u € f(X). Hence there exists v € X such that u = fo.

Since {y,} is a Cauchy sequence and {ya,41} — wu it follow that {ya,} — u.

cd(fv,Txy,,)d(gz,,, ,Sv )
ad(fv, Twa,) + bd(gr,,,, Sv)Jr% € s(Sv, Txa,).

ad(fv,szH)+bd(gac2n,Sv)+w € ( N 8(81}7@/)).

1+d(fv,gx
(fv.975,) yETwan

cd(fv,Txy,,)d(gz,,, ,Sv
ad(fv, Twa,) + bd(g,,,, Sv)Jr% € s(Sv,y),Vy € Ty,

d(fv. Ty, )d(gz,,S0
ad(fv, Twsy) + bd(gz,,, Sv)+ U Tll0e) ¢ (S0, 1),

cd(fv,Txs,,)d(gz,, ,Sv
ad(fo, Titzn) + bd(g2y,, Sv)+“Pefomn=t € | s (A, yonia))-
uteSv

There exists v,, € Sv such that

. cd(fv,Txy,)d(gzy, ,Sv
ad(fv,Tzo,) + bd(g%nv Sv)+ ( 1+d(zf3,g(;7zj) ) €s (d(vn7y2n+l))'

Therefore d(vy, Yo, y1) 3 ad(fv, Twa,) + bd(gr,,, Sv)—&—WA

Using g.l.b.property, we get

cd(fv,ya, d(Yy,,,Vn
d(Vn, Y1) = ad(f0, Yans1) + bd(yy,,, vp) + ALt ),

Using triangular inequality, we obtain

d(Vn, Yons1) T ad(fv,yans1) + 0d(Ysy, Yons1) + 0d(Ys, 41, Un)

+ cd(fv,yz,b+1)d(y2n,1m)
1+d(fv,y2,) ’

e d(fv,y2n41)d(Ya,,Vn
d(v,,Yon11) 3 7540, Y1) + 1250 s Yonsr) + 15 L e )

Now consider

d(fo, vn) 3 d(fl), y2n+1) + d(y2n+17 'Un)



d(fv,yon+1)d(Ys,, on
A0 o) + 150, Yoner) 7oA o) o AL )

ld(fv,va)] < [d(fo, yons1)] + 1% 100, y2nea)| + 75 1Yoy Y2ns)|
e [tz |d(yzps0n)]

1-b [1+d(fv,y5,)]
Letting n — oo , we obtain

|[d(fv,v,)] — 0 as n — oo. By Lemma 1.5.2(Ch-1), we have v, — fv as

n — Q.

Since Sv is closed and {v,} C Sv, it follows that fv € Sv.
Now u = fv € Sv and Sv C g(X) it follows that u = fv = gw for some

we X.

ad(f 21, Tw) + bd(gw, Sway )+ AW Hpulatdomnn) es(Szy, .y, Tw).

d(faon—1,Tw)d(gw,Stan—
ad(f a1, Tw) + bd(gu, Sway )+ A1),

€ N sLTw)|.
yleSzon 1
cd(fron—1,Tw)d(gw,Szon_1)

ad(fwa,—1, Tw) + bd(gw, Swa, 1)+ 1o 1,9w)

€ s(yt, Tw),Vy* € Sxo,_1.

cd(fron—1,Tw)d(gw,Sxon_1
1+d(fran—1,9w)

ad(fron—1, Tw) + bd(gw, Ston_1)+ ) ¢ $(yan, Tw).

cd(fron—1,Tw)d(gw,Szan_1)
1+d(fron—1,9w)

€ U s(dyzm,u).

uleTw

ad(fron—1, Tw) + bd(gw, Swopn_1)+

There exists some w,, € T'w such that

ad(fxa,—1, Tw) + bd(gw, SIanl)+Cd(fmlriclli]fﬂ::;)f—(gl?;i)z%i1) € s(d(yon, wy)).

d(Yan, wy) 3 ad(fro,—1, Tw) + bd(gw, ngnfl)+Cd(f“{:;i?g:fﬁff“*‘).

Using g.l.b.property, we obtain

(Yo, wn) 5 ad(yon—1,wn) + bd(gu, yo, )+ el sz

Using triangular inequality, we have



Ay, wn) 3 ad(Yon—1, Yon) + ad(Yn, wy) + bd(guw, yo, )+ S tin)0042n)

(Y 0n) 3 750 (Y21, Yon) + 120, yon) + 1 Wnctin)lovien)

Now consider
d(gw, w,)
5 d(gu)v y2n) + d(y2n7 ’LU").

> d(y2n—1,wn)d(gw,y2n
;5 d(gw7 y2n) + ﬁd(yanlv yZ'rL) + %d(gwy yZ'rL) + lia%'

‘d(gw7 wn)‘ S |d(gw>y2n)‘ + ﬁ |d(y2n—17 an)\ + ﬁ |d(gw y2n)‘

4-c ld(y2n—1,wn)|[d(gw,y2n)|
1-a N+d(yen—1,9w)| -~

Letting n — oo we get
|d(gw, w,)| — 0 as n — oo.
By Lemma 1.5.2(Ch-1), we have w,, — gw asn — o0.
Since Tw is closed and {w,} C Tw, it follows that gw € Tw.
We have u = fv = gw € Tw.
Since f is S-weakly commuting and ¢ is T-weakly commuting we have
fv e Sfv= fu € Suand g’w € Tgw = gu € Tu.
Thus the pairs (f,S) and (g, 7) have the same coincidence point.
This part of the work was published in ” Asia Pacific Journal of

Mathematics”, Vol.3, No.2, 2016, pp 136-143.



CHAPTER 3

COUPLED AND COINCIDENCE POINT THEOREMS IN C*-
ALGEBRA VALUED FUZZY SOFT METRIC SPACES

We divide Chapter 3 into two sections, namely, Section 3.1 and Section
3.2. The main aim of the chapter is to prove common coupled fixed point and
coincidence point theorems in C* -algebra valued Fuzzy soft metric spaces.

SECTION 3.1: COUPLED FIXED POINT RESULTS AND APPLICATIONS
IN C* - ALGEBRA VALUED FUZZY SOFT METRIC SPACES

In this section, we establish the existence and uniqueness of common cou-
pled fixed point results for three mappings in C*- Algebra valued Fuzzy Soft
metric spaces. Moreover, we give an illustration which presents the applicabil-
ity of the achieved result and also we provide application to Integral Equations.

Definition 3.1.1.(R.P.Agarwal et.al.[79]): Let (E,C, d.) be a C*-algebra
valued fuzzy soft metric space. Let'S™: E x E — E be a mapping, an element
(F.,,G.,) € E x E is called coupled fixed point of S if S(F,,,G,,) = F,, and
S(G.,, F.,) = G.,.

Definition 3.1.2.(R.P.Agarwal et al.[79]): Let E be absolute fuzzy soft
set. An element

(F.,,Ge,) € E x E is called

(i) a coupled coincidence point of mappings S: Ex E — Eand f: E — E
it fF, = S(F.,,G.,) and fG., = S(G,,, F.,),

(i4) a common coupled fixed point of mappings S : ExE — Eand f : E — E
if F,, = fF., = S(F,,,Ge,) and G, = [G., = S(G,,, F.,).



Definition 3.1.3.(R.P.Agarwal et al.[79]): Let E be absolute fuzzy soft
setand S: Ex E — Eand f: E — E. Then {S, f} is said to be w-compatible
pairs if
F(5(Fey, Gey)) = S(fFey, fGe,) and [ (S(Gey, Fey)) = S(fGey, fFe)).

Theorem 3.1.4. Let (E,C,d,-) be a C*-algebra valued fuzzy soft metric

space.Suppose S: E x E — E and f,g: E — E be satisfying,
(3.1.4.1) S(E x E) C g(E) and S(E x E) C f(E),
(3.1.4.2) {S, f} and {S, g} are w-compatible pairs,

(3.1.4..3) one of f(E) or g(E) is complete C*-algebra valued fuzzy soft metrics of
E7

(3.144) der (S(Fey, Gey), S(Fey, Goy)) =2 85 (fFry gFey)t + 6 des (fGey 96y )i
for all F,,, F,,,G.,,G., € E

where @ € C with |[v/2a|| <1 Then S, f and g have a unique common coupled
fixed point in E x E. Moreover, S, f and g have a unique common fixed point
in E.

Proof: Let F,,, G, € E. From (3.1.4.1) we can construct the sequences

{Fegn}anlmv {Gegn}anloov {]egn}anlooy {Jezn}anloo SUCh that

I

€2n+1

S(Ff%.v Géﬂm) = fFEZ'rH»l = If12n S(F

€2n+1) G€2n+1)

= gF,

eant2
S(G€2n7 Fezn) = fG€27x,+l = JEZn S(GE%H»I 5 F€2n,+1) = gG82n+2 = JCZn+1

forn=20,1,2,...

Notices that in C*-algebra, if a,b € C, and @ =< b, then for any & € C,

both #*az and 7*bi are positive elements and z*ax < FDE.

ot
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From (3.1.4.4), we get

de(Legy i1 Legnin) = der (S(F%H,G%H)7 S(Fuy, s, Gm”))
=@ e (fFrniys 9Fennsn)a + @ dee (fGegpir s 9Grnnsa)
=0 (o (s Tegs) + e (g Jern) ) @ (3.1.4.5)
Similarly,

d(:*(JEZrL+17 J€2n+2) = d:* (S(G62n+17 F€2n+1)7 S(G€2n+27 F€2n+2))
= d*d;* (fGezn+1 ) gG62n+2)d + &*d;* (fFezn+1 ) gF62n+2)d

=<a* <d;* (J62n7 J62n+1) + dN.:* (Iczm 162"+1 )) a (3146)

Let Ront1 = ch* (I€2n+17 [32n+2) + dNC* (Je‘ZTH»l’ J,

52n+2)

and now from (3.1.4.5 ) and (3.1.4.6 ), we have

Ront+1 = dC* (Iezn+17 I&zn+2) + d;* (J62n+17 J62n+2)
a (d;* (162n7 Iezn+1) + d;*(‘]@m J62n+1)> a
+a* (d;* (J62n7 J52n+1) + d;* (I€2n7 I€2n+1)) a

= (V2a)*roy(¥/20)

= [(V2a) ™" ro(vaa) !

Now, we can obtain for any n € N

Rn = d;* (Iem Ien+1) + d;*(Je,ﬂ Jen+1)
< (V) Rt (V32)

=< [(V2a)*]" ko(v2a)"

If iy = Og, then from Definition 1.6.1(Ch-1) of M; we know (I, J.,) is a
coupled fixed point of S| f and g.



Now letting f)é = ko, we get for any n € N, for any p € N and using triangle

inequality

dc* (Iﬁzn+p7 ]ezn) = dc* (162111»}77 ]62n+p71 )+dc* ([€2n+p—17 I@2n+p72)+- ) '+dc* ([€2n+1 1€ )7

de(J,

€2n+p?

‘]ezn) = d;* (‘]Ezn+p= J52n+pfl)+d’;* (J62n+p—17 J€2n+p72)+‘ . '-‘rd;* (J52n+17 J62n)'

Consequently,

dc* (152n+p7 [ez,b) + dC*(J€27L+p7 Jegn) j /{2n+p71 + K?n+p72 +--+ Ran
2n+p—1

= Y (V2] mo(v2a)m

m=2n

and then

Hdc* (162n+p7 ]ﬂzn) + dﬂ* (Je2n+p7 JeQn)H < Rontp=1 + Konqp—2 + 0+ Koy
2n—+p—1 00
> IV2alPree < 30 (V24P o
m=2n m=n

Ilv/2al*"
1-[|V2al[?

IA

ko — 0 asn — oo

which together with de (1o, 3 Le,,) < do(I

= €2n4p)

Jep,) implies {I., } and {J,,,}

[62n) + d;* (J62n+p7 J€2n) and

e (Jegs Jen) = e (T Teny) + e (Jess
are Cauchy sequences in E with respect to C.
It follows that {I.,, ,} and {J.,,.,} are also Cauchy sequences in E with
respect to C.

Thus {I.,} and {J.,} are Cauchy sequences in (E,C,d,-).

Suppose g(E) is complete subspace of (E,C, d,-).

Then the sequences {I., } and {J. } are converge to I, Jo respectively in
9(E).

Thus there exist F.., Ge in g(E) Such that

limy, o0 Ie, = I = gFy and limy, oo Jo, = Jo = gGo (3.1.4.7)
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We now claim that S(F.,Ge) = I and S(Ge, Fu) = Jor.

From (3.1.4.4 ) and using the triangular inequality, we have

O = de- (I, S(Fur, Gor))

(T, Tepy ) + dex (Iey, 1, S(Fur, Gor))
(I, Ty ) + dee (S(Fan, 1 Gey), S(Fur, Gor))

< dp (Lo, Loy, ) + @ de (fFoy oy gF)a+ @ de(fGey,,ys gGer)
(1o, I, )+a d (Iey,, Ier)a + Zz*dc*(JeW Jer)a.

€ant1
Taking the limit as n — oo in the above relation, we obtain

de (I, S(Fy,Go)) = 05 and hence S(Fu, Gu) = Iy

Similarly, we prove S(Go, For) = Jor.

Therefore, it follows S(Fu, Ge) = I = gl and S(Ge, Fo) = Jo = gJo.

Since {5, g} is w-compatible pair,

we have S(I./, Jo) = gl and S(Jo, Io) =gJo.

Now to prove that gl = I, and gJo-= Jo.

Og = der (I 91or)
< de (S (Fupninr Gesnin) S (I, Jor))
<@ e (fFupr 91er) @+ @*der (fGegnyrr 9Jer) @
< @*dy (Ley,, gl @+ @*de (Joy,, gJer) @

Taking the limit as n — oo in the above relation, we obtain

des (Ie’v gIe’) = &*Jc* (]e’v glfi’) a+a*de (J€/> g']fi/) a. (3148)

Similarly, we have

dew (Jo, gJu) = @ de (Ju, gJu) @+ @*de (I, glor) . (3.1.4.9)
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From (3.1.4.8 ) and (3.1.4.9), we have

O = de-(Ior, g1) + dpe (Jor, g.Jr)
= (V2&) (de (Lo, L) + di (Jer, 90r) ) (V3.

Therefore,

0 < ||dp (I, g1or) + doe (Jur, g Jor)||
< N1(v3a) (de (Lo, gler) + die (S, g0 ) (V3D
< N(V20)[[2||de (er, gTer) + de (Jer, 9T .

Since ||(v2a)|| < 1, from above we have ||de (I, gTor) + des (o, g Jor)|| = 0.
Hence gl = I and gJo = Jo.

Therefore, S(Iy, Jor) = gl = I and S(Jer, L) = gJe = Jor.

Thus (I, Jor) is common coupled fixed point of S and g.

Since S(E x E) C f(E). So there exist K., Lo € E such that

Sl J) = L = Ko and S(i 1) = Jo = fLo.

Now from (3.1.4.4), we have

O = ch*(S(KcHLe’)7Ic’)
d;*(S(Ke’ L ) ((Ie’aJe’))

IA

IA

d*dc* (fKe’7 g]e’)(l + a*(fc* (fLe’7 g‘]e’)a‘
@*de- (I, 1)a + @*de(Jor, Jor ).

BN

We have d(S(Ko, Le), Is) = 0, which means that I, = S(K., Lo).
Similarly we can prove that S(Ly, Ker) = Jor.

Since {S, f} is w-compatible pair, we have S(I, J.) = fI, and
S(Jurs L) = f



Now we prove that fI, = I and fJo = Jo.

()é j d;*(flﬁl7 Ie’) j d;*(S((Ie’; JE'))7 S(Ie/; Jc’))
= @ dy (f1, gl)a + @*dp (f o, gJu)d
< @ de (flo, I))a + a*de (f o, Jo)a  (3.1.4.10)

and

Op = der (fJory Jor) = der(S((Jur, 1)), S(Jer, L))

= @ dp (fJu, gJ)a + ad(f1s, gl

IA

e (fdur, Jo)a+ @t dp(fIo, I)a.  (3.1.4.11)
From (3.1.4.10) and (3.1.4.11), we have

Op = des(fIr, 1) + de (f Tty Jor)
= (V@) (de (Lo 1) + e (feier) ) (V20).

Therefore,

0 < |ldes (fIer, L) + dos (f i, T )|
< (V28) (dor (f o) + i (f e ) ) (V2D
S H(\/E&)HQHd;*(fIEH Ie’) + d;*(.fje’-, Je’)H'

Since ||(v2d)]] < 1, from above we have ||de(flu, Io) 4 des(fJur, Jo)|| = 0.
Hence fly =1 and fJo = Jo

Therefore, we have S(I., Jo) = flo = I and S(Jo, [o) = fJo = Jeo.
Thus (I, Jo) is common coupled fixed point of S, f and g.
In the following we show that the uniqueness of common coupled fixed point
in E x E. First we assume that there is another coupled fixed point (Lo, Jor)

of S, fand gin E x E.
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From (3.1.4.4), we have

des (I, 1) = dpe(S(Ler, Ju), ST, Jur))
= @ de(flo, gl )i+ @ dee (g, gJon )i

< @ de- (I, In)a + @*dp (Jor, Jor)a  (3.1.4.12)

and

Ao (Jor, Jor) = Ao (S(Jur, 1), S(Jer, Ior))

N

e (f o, gJon)a+ @*des (glor, gl

IA

@ de (Jor, Jo)a + @*dye (I, I )a. (3.1.4.13)

From (3.1.4.12 ) and (3.1.4.13 ), we have

Ao (Lo, o) + dov (Jur, Jor) =< (V/24)* (d; (T L) + doe (Jur, JE,,,)) (v/2a).

It follows that

[ldex (Ler, L) + des (Jers JI - < |IV28lP[[de (Lr, o) + des (e, Jen)|-

Since ||v/2d|| < 1, from ‘above we have ||dg (Lo, Ior) + de (Jur, Jor)|| = 0.
Hence we get (1o, Jo) = (I, Jer) which means that the coupled fixed point is
unique.

In order to prove that S, f and ¢ have a unique fixed point, we only have to

prove I, = J.. We have

d:* (Ie’7 Je’) = d:* (5(16’7 JE')? S(Je’> If;’)) = d*d:* (f[e’7 g']e’)a + af*d:* (fJe’a g[e’)&
< @ dg (I, Jo )i+ @*dp (Jo, 1)

then
l[dex (Lers T < [al[|des (Ler, Je )| + 1l P|ldes (Jer, Ler)|

< 2|l Pl des (e, o).
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It follows from the fact ||a|| < % that ||de (I, Jo)|| = 0, thus I = J... which
means that S, f and ¢ have a unique fixed point in E.
Corollary 3.1.5. Let (E, A, d.+) be a complete C*-algebra valued fuzzy

soft metric space. Suppose S: E x E — F satisfies
(3.1.5.1) dg (S(F.y, Ge,), S(Foy, Goy)) = @ des (Foy, Fop )i+ @*des (G, Gyt

for all F,,, F,,,Ge,,Ge, € E, where @ € C with ||v/2a]| < 1.
Then S has a unique fixed point in E.

Example 3.1.6. Let £ = {ey,eq,e3},U = {a,b,c,d} and C and D are
two subset of E

where C' = {eq, ez, e3}, D = {e1,es}. Define fuzzy soft set as,

€1 = {(10,3, bo.2, Co.4, d0.1}7 €2 = {%.57 bo.4+ Co.65 d0.3}7

(Fg,C) =
€3 = {00.77 boigsCo.9, d0.5}

(GE,D) = {61 = {%.4750,6,(50,37610,2}762 = {&0,8750.9700.57(10.7}}
F, = HE., = {a0.37b02,00‘47 d0A1}7 F, = KF., = {60,57170.4&0.67510.3}
Fe, = KE., = {a07,b0.8, o9, dos}

G, = HGe, = {ao.4,b0.6, co3, doa}, Ge, = Hée, = {aos, bo.g, cos, do7}
and FSC(Fg) ={F.,, F.,, F.,,G.,,Ge, } ,
let E be absolute fuzzy soft set, that is E(e) = 1 for all e € E,
and C' = My(R(C)*), be the C*-algebra.

Define dp-: E x E — C by
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e (Fey, Fey) = (Inf{|Fe, (a) — Fey(a)|/a € C},0),
then obviously (E C, Jm) is a complete C*-algebra valued

fuzzy soft metric space.

- - = F2 +G?
We define S: F x E — E by S(F.,,G,,)(a) = ECRaCH

f:EeEbyfFel:Fg1 andg:E—>E~"bygF51:F§1 for all @ € U and

F,,,G., € E. Notice that,fF,, = "2t = {0.10,0.06,0.13,0.03} and

gF., = 1 ={0.25,0.2,0.3,0.15} .

Thus,
Inf{luip, () = pgr,, (5)/s € C} = Inf{0.15,0.14,0.17,0.12} = 0.12

) 012 0
Hence dp«(fF.,,gF.,) =
0 0.12

e = {0.13,0.2,0.1,0.06} and

also, fG., = 5+

9G., = %1 = {0.4,0.45,0.25,0.35} .

=
Thus,
Inf{lpfe,, (s) = voa,, (s)l/s:€C} = Inf{0.27,0.25,0.15,0.29} = 0.15

. 015 0
and dc* (fGeu gGez) =
0 0.15
F2 +G?
Moreover, S(Fe,, Ge,)(a) = ==+ = {0.062,0.1,0.062,0.012}

F2 +G?
and S(F.,,G.,)(a) = —2 2= {0.222,0.242,0.152,0.145}

Then
des (S(Fey, Ge,), S(Fey, Giey)
0.09 0
0 00
. B0 | ]o2r 0 Sy
0 2 0 027 0o ¥
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s

o
(e}

0 012 0 015 0
Jr
V3 0 0.12 0 015

IA
o

w

j é* (dNC*(fFCI7gFE2) + CZC*(fGCITgGCQ)) 6'

v3op
Here ¢ = 3 with ||&]] = & < L+
, lall = & < &

Therefore, all the conditions of Theorem (3.1.4) satisfied.
Hence S, f and g have a unique coupled fixed point.

Theorem 3.1.7. Let (E,C,d.) be a C*-algebra valued fuzzy soft metric

space.

Suppose S: E x E — E and f,g: E — E be satisfying
(31.7.1) S(E x E) C g(E) and S(E x E) C f(E),
(3.1.7.2) {S, f} and {S, g} are w-compatible pairs;

(3.1.7.3) one of f(E) or g(E) is complete C*-algebra valued fuzzy soft metrics of
E7

(3174) de- (S(F€17 Gel)? S(FEQ’Gez))
= ad;*(S(F817G61)7fF81) + ad;*(S(Fezv Gez)ngez)
for all F,,, F,,,G.,, G, € E,

where @ € C' with ||a|| < 1. Then S, f and g have a unique common coupled
fixed point in £ x E. Moreover, S, f and ¢ have a unique common fixed point
in F.

Proof: Similar to Theorem 3.1.4, construct four sequences {F,,,}, {Ge,,},
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{I,.}, {Jey, } in E such that

S(FEZH'/ GeQn) = 'fFe2'n.+l = IL,, S(F52n+17 Ge2'rz+l) = ~gF52n+2 = Iezn+1
S(Gespy Feoy) = JGesiy = Jea, S(G€2n+l7 Feznﬂ) =09Geypys = Jesnir

for n=0,1,2,...

From (3.1.7.4 ), we have

de (Iflzm-u [e2n+2) = d::* (S(Fe2n+l 3 G627.+1 )7 S(F62y.+27 G€2n+2))

j dd;* (S(Fezn+1 ’ G62n+1 )7 fF€2n+1) + dd;* (S(Fezn,+27 G€2n+2)a gF62n+2)

< ade Ly, 1y Loy, ) + @der (I, ), 1,

2n+17 T €2n €2n+1 ) N

L, ) < ad.(I

€n+2/) — c €2n+417

I

e2n)
and Shnﬂaﬂy‘ (jC’ - &)dz*(J627L+17 J62n+2) = &d;* (J62n+17 Jezn)'

Therefore, (fé —a)de (I

€2n+17

Since a € C', with ||a|| < 1, we have I = ais invertible and

(Ig —a)tae .

Therefore,
dNC* (]62n+17 I€2n+2) = ( ~6‘ - a‘)_léd;* (I€2n+17 [Ezn)
d:* (Jfl2n+1 5 ']€2n+2) = (i(j - a’)ilad::* (J€2n+1 ) Jflzn )
Then

||d:* (]82n+l ’ 1€2n+2)H < H(i(:' - a’)il&HHd:* ([ezn+17 ]ezn) |
||d;*(J€2n+l7 Jezn+2)H S H(INC.’ - ﬁ)fldHHd;*(Jeznﬂ, JSZN,)H'

It follows from the fact

e —a)~all < e =) Mlllall < 3 llali™llall = tig < 1

that is {I.,, }, {Je,, } are Cauchy sequences in E with respect to C. It follows
that {I.,, ., } and {J.,,,,} are also Cauchy sequences in E with respect to C.

Thus {I,, } and {J,,} are Cauchy sequences in (E,C, d,-).
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Suppose g(E) is complete subspace of (E, C, d.-).
Then the sequences {I.,} and {J.,} are converge to I.,.J respectively in
g(E). Thus there exist F.., Go in g(E).

Such that

lim,, .o le, = I = gF. and lim,_.o, Jo, = Jo = gGer.

We now claim that S(Fp, Ge) = I and S(Ge, Fu) = Jo.

From (3.1.7.4 ) and using the triangular inequality, we have

0

o))

1A
QL
§

i
=
S
Q

«(
(I Loy, ) + d; (Ieyn s S(Fur, Gor))
< dee (I, Teg ) + e (S(Fey1s Gegi), S(Fur, Ger))
e Tegy) + e (S(Foy1s Geyi)s f By ty) + den (S(Fur, Gor), g
( )
lex )

= dc* [e’v I

€2n+41

+ (de*( €2n+17 Iﬁzn) + adC* (S(Fe’a Ge’)v IE’)

Lo Loy, ) + e (Iy, 1 Loy, ) Gde (1, S(Fir, Gor)).

€2n+41

Which implies that

e (S(Fu, Go), 1o) = (I — @) ade Iy, Ley,) + (I — @) Mo (Iey, 1 Ler).

Taking the limit as n — oo in the above relation, we obtain
de-(S(Fu,Go), 1)) = 05 and hence S(Fu,Go) = I

Similarly, we prove S(Go, For) = Jor.

Therefore, it follows S(Fu, Ge) = I = gl and S(Ger, Fo) = Jo = g
Since {5, g} is w-compatible pair, we have S(I, Jo) = gl

and S(Jo, L) = gJo.

Now to prove that gl = I and gJo = Jo.

66

F.)



From (3.1.7.4 ) and using the triangular inequality, we have

j dc* Ie’y ]egnJrl) + d;* (]egn+1vgle’)
)75(16’7 ‘]6’))
(Lers 162n+1) + &d::* (S(F€2n+l7 G€2n+1)7 fF€2n+l) + &d::* (3(16’7 ']8’)7 916’)

€2n+1

(
(
< de (Lo, ey, ,,) + des (S(Fy, G
(
(

e (s, 132n+1) + &d;* (162n+17 Iﬁm) + &d;* (Iﬁ’v gle')'

Which implies

()C_’ = dC* (]6’7 gle’) = (IC’ - d)_ldc* (Ie’7 I€2n+1) + (ié - &)_161({‘;* (132n+17152n)'

Taking the limit as n — oo in the above relation, we obtain

d;*(lez,gle/) = 05 which implies g/.s = I.,. Similarly we can prove gJo = Jo.
Therefore, S(Iy, Jor) = gl = I and S(Jer, 1) = gJo = Jor.

Thus (I, Jer) is common coupled fixed point of S and g.

Since S(E x E) C f(E). So there exist Ko, Lo € E such that

Sl Jo) = L = fKo a6 S(Jur, L) = Ju = fLo.

Now from (3.1.7.4 ) and using the triangular inequality, we have

0g = dp(S(K, Ler), o) = dee(S(Kor, Ler), S(Lr, Jur))

IA
€

e (S(Ker, Ler), fKer) + ade- (S(Ier, Jor), g1

&dc* (S(Ke’a Le’)7 Ie’) + éch* (([e’> ]e’)~

IA

We have d(S(Ko, Le), Is) = 0, which means that I, = S(K., Lo/).
Similarly, we have S(Ly, Ko ) = Jor.

Since {5, f} is w-compatible pair, we have S(I./, Jo) = fI.

and S(J, Iy) = fJo.

Now we prove that fl, = I, and fJo = Jg.
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From (3.1.7.4 ) and using the triangular inequality, we have

O =X de-(Lor, f1o) = de (ST, Je), ST, Jor))

PN

adue (S(Ir, Jor), fIr) + adee (ST, Jer), g1or)

ade (I, f1o) + ade (g1, g1o0)

IA

&dc* (Ie’7 f[e’)

IA

which means that fl, = I, and

O X de(Jor, f o) =X dee(S(Jer, 1), S(Jur Ir))

IA

e (S(Jer, 1), fJor) + den (S(Jer, Ier), g Jer)
= ades (Jor, f o) + ades (g e, o)
= ade(Jor, f o)
which means that f.Jo = J.. Therefore, we have S(I,J.) = fIs = I and
S(Jer, 1) = fdo = Jo.
Thus (I, Jo) is common coupled fixed point of S, f and g.

The same reasoning that in Theorem 3.1.4 tells us that I, = J./, which means

that S, f and g have a unique fixed point in .
Application to the existence of solutions of integral equations
Theorem 3.1.8. Let us Consider the integral equation

F.(t)= [ (Ki(t.s, F.,(s)) + Ka(t, s, F.,(s)))ds,t € C
c

Where C' is a Lebesgue measurable set. Suppose that
(1) K1, Ky : C x C x R(C)* — R(C)*,
(i2) there exist two continuous function 7 : C' x C' — R(C)* and r € (0,1)
such that for u,v € C and F,, (v), F.,(v) € R(C)*,
inf{[ K (u, v, Fe, (v)) = Ko (u, 0, Fe, (v))[}
< rinf{|7(u, v)[}. mf{|(F, (v) = Fe, (0))[},

68



(éii) sup [inf{|7(u,v)|}dv < 1.
teC ¢

then the integral equation has a unique solutions in L>(C).
Proof: Let £ = C = [0,1] and E = L®(C) be the set of essential bounded
measuarble function on C' and H = L?(C), where the parameter set C is
a lebesgue measureable set. By L(H) we denote the set of bounded linear
operators on hilbert space H.
Consider d-: E x E — L(H) by dC*( vy o) = Mmf{w(}e] (9)-nt, (5)I/5€C) for
all I, F., € E, where M, : H — H is the multiplication operator defined by
My(7) = h.7 fort € H. Then d;* is a C* - algebra valued fuzzy soft metric
and (E, L(H),d.+) is a complete C* - algebra valued fuzzy soft metric space.
Define two self mappings S : ExE—E by

S(F,,,Ge,)(t ({ (K1 (t, s, For($)) + Ka(t, s,Ge, (8))) ds, t € C

Notice that

JC*(S( €17G51) S(FEQ G€2)) = mf{

/.S'EC}'

B(Fey Gey) O THE (Fey Gey) ()

Now consider norm

1 (S(Fey, Go), S(Fey, Gy |

= Sup

h,h
( 1nf ‘HS(FEI Gel>(s) IJS(FEZ Ge2)(5) /SEC} )
= Sup [ {mf{

5) = s)| /s € Ct|h(t)h(t)dt
Ihll=1C 0 o) () = (1 ) ‘/ }] (O)A(?)

< Sup [ | [inf{|Ki(t,s, Fe,(s)) — Kl(t,s7F62(s))|}ds:| |h(t))? dt
[rl=1c Lo

+ Sup [ | [inf {|K;i(t, s, Ge,(s)) — Ki(t,s,Ge,(s ))|}d9} |h(t )| dt
lrl=1c Lc

< Sup [ {f?‘inf{\T(t s)(Fey (s)) = 7(t,8) (Fey (s ))I}dS} |n(t)[* dt

[nl=1C Lo

+ Sup [ {ffinf{h(t §)(Gey () = 7(t,8)(Gey (s ))I}dS} |n(t)[* dt

[rl=1c Lo
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<r Sup [ {fmf{h—(f s)|}inf {|F,, (s) — FBQ(S)\}ds] |h(t)|? dt

Irl=1c

4 Sup | [f inf {|7(t, )|} inf {|G, (s) — Gexs)\}ds} Ih(e) dt

<r Sup [fmf{v ‘ s)\}ds} Ih(e) dt. [inf {|Fuy(5) — Fua()} ]

[rll=1c

e Sup I | Fint (e )bs | IO . it (1Gos() = G

<7 Sup [inf {|7(t,s)|}ds. Sup f\h | dt. |[inf {|F¢,(s) — Fe, (5)| ] &
lIrll=1C [lrll=1C

+r Sup [inf{|7(t, s)|}ds. Supf\h VP dt. |[inf {|Ge, (5) — Gep (5)[ o
lnl=1C [Irll=1C

< rllinf {[Fe, (5) = Fey ()}l + 7 [linf {|Ge, (5) — G62(8)\}||oo
Set a = /rlyu), then a € L(H) and ||a]| = /r < —=. Hence, applying our

corollary(3.1.5) , we get the desired result.
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SECTION 3.2 : COINCIDENCE POINT THEOREM BY USING
HYBRID PAIROF MAPPINGS IN C*-ALGEBRA
VALUED FUZZY SOFT METRIC SPACES

In this section, we establish a coincidence point theorem for a hybrid pair of
single valued and multivalued mappings in complete C*-algebra valued fuzzy
soft metric spaces. An example is also given to validate our result.

We need the following definitions and results in the sequel.
Let (E,C,d.) be a C*-algebra valued fuzzy soft metric space. We denote by
CB(E) be a class of all non-empty closed and bounded subsets of £. For the
points F, , F,, € E and X,Y € CB(E),
define De-(F.,,Y) = infg, oy de(F.y, Gey).
Let H,» be the Hausdorff C*-algebra valued fuzzy soft metric induced by the

C*-algebra valued fuzzy soft metric dy+on E, that is

H.(X,Y)= max{ sup. De-(F.,,Y), sup D-(X, Gel)}

Fe eX Gey €Y

for every X, Y € CB(E). It is well known that <C’B(]§7)7 C, ]fcx> is a complete
C*-algebra valued fuzzy soft metric space, whenever (E .C, d;*) is a complete
C*-algebra valued fuzzy soft metric space.
Definition 3.2.1.(R.P.Agarwal et al.[79]): Let T : £ — CB(E) be a
multi-valued map. An element F,, € E is fixed point of T'if F,, € T'F,,
Definition 3.2.2.(R.P.Agarwal et al.[79)): Let T : £ — C'B(F) and f :

F — E be a multi-valued map and single valued maps. An element F,, e E

is coincidence point of T" and f if fF, € TF.,. We denote

C{f. T} = {F € E/fF, € TFEI}
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Definition 3.2.3.(R.P.Agarwal et al.[79]): An clement F,, € E is a com-

mon fixed point of 7' : £ — CB(E)and f : E — E if F,, = fF, € TF,

Theorem 3.2.4. Let (E,C,d) be a complete C*-algebra valued fuzzy

soft metric space, and T: E — CB (E) be a multi-valued map satisfying
He (TF,,, TF.,) X @de(F.,, F.))a (1)

for all F,,, F,, € E, where @ € C with ||a|| < 1. Then T has a unique fixed
point in E.
Lemma 3.2.5. If X,Y € CB(E) and F,, € X, then for any fixed b € Cll

with ||b]| < 1, there exist F,, = F,,(F.,) € Y such that
de- (F.,, F.,) < bHo (X, Y) (2)

Now we give our main result.
Theorem 3.2.6. Let (E,C’7 d;*) be a complete C*-algebra valued fuzzy
soft metric space. Let S: E — CB(E) be a multi-valued map and f: E — E

be a single-valued map. Suppose that
]—ic* (SF617SF62) = &d;*(fF617fFE2)

+i (D}, (fF.,,SF.) + De(fF.,, SFeQ))

ta (D} (fF.,,SF.,) + Do (fF.,, SFEL)) (3)

for all F,, F,, € E, where @ € C with lla]| < 1. Suppose that

(A1) S(E) C f(E);

(A) f(E) is closed.
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Then, there exists point F, € E, such that fF. e SF..

Proof: Let F,, € F be arbitrary. Then, fF,, and SF,, are well defined.
From (A,), there exists F,, € E, such that fF,, € SF,,.
Again from (A;) and Lemma 3.2.5 with |[b|| < 1, as fF., € SF,,, there exists

F., € E such that fF,, € SF., and
(fFEI fFe2) (SFGU7 SFel) (4)
from (3) and (4), we get

de- (fE.., [F.,)

BN

bH,-(SF,,, SF.)

BN

Bad:*(fFeo, fE1)
b (Do (fFuy, SE) + Do (FFoy, SF) )
+B€7’ <D~C*(fFemsF€1)+ﬁc*(fF€175F )> (5)

In contrast, we have

Do (fFoy, SEy) = dee(fFy, fF.,)
Do (fFe SFy) % des(fFy, fFe)
Do (fFyy, SF.) = d- (fFuy, fF.)) =0
Do (fFy, SF.) = doe (fFoy, fFL,)
= der (fFegs fFey) + des (fFey, fE) (6)

from (5) and (6), we get

der (fFe, fFe) X bade(fFe, fFL)
8 (e (f Fegs fFor) + e (FFor, S F) )

+ha (df* Fups fF.) + e (fF, fF.0))

=3 bad.(fF.,, fF.,) + 2bad,-(fF.,, fF.,) (7)
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Therefore,

(1= 20a)der (fF.y, fFo,) =< 3bade- (f Fuy, fF.y)
Since |[]]]al| < 1, we have 1 — 2ba is invertible, and can expressed as
(1—2ba)"' = i (2bd)™, which together with 2ba € C,’

m=0

can vields (1 — 2ba)~! € C,. By Lemma 1.6.7(iii)(Ch-1), we know

de- (fFoy, fF.,) = Rde(fFop, fF.)

where 7 = 3ba(1 — 2ba) ' € C., with ||3ba(1 — 2ba)~'|| < 1.
Again from (A;) and Lemma 3.2.5 with ||b]| < 1, as fF,, € SF,,, there exists

F., € E such that fF., € SF,, and
d;»« (fFewae:z) fl;]fC*(SFEwSFm) (8)
from (3) and (8), we get

d;* (fF627fFl’;’3) - EHC*(SFE27SFE1)

A

IA

dez* (fFem fF€1)
+ha (D},( fF.,.SF.,) + Do (fF,,, SF61)>

+Ea« <D~C*(.fFEZ7SF€1)+ﬁ'¢*(fFfll7SFf12)> . (9)
In contrast, we have

De-(fFey, SF.,) = des(fFey, fF,)
De(fF.,,SF.)) X de(fF.,, fF.,)
Do (fFey, SF.y) 2 des(fFepy fFey) = 0
Do (fFey, SFe) = dee(fFuy, fFy)
2 de (fFuys fFe) + do(fFey, f ). (10)
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Similarly as above, from (9) and (10), we get

d;* (fF627fF63) j I%d;*(fFﬁl7fF62)

Continuing this process, we can construct a sequence {G,,} in E, such that

G., = fF,, and, for each n € N,

Ge2n = fF62n+1 € SF€2n G = fF62n+2 € SF€2n+1 (11)

€2n+1

and

e (G62n ) G62n+1) = d;*(fFEZnﬂ ) fF€2n+2) = ’%d;* (fF€2n+1 ) fFezn)
dC* (GCQH—IT Gﬁzn) = dNC* (fFe2n7 fFEZn,+1) = kd;* (fFC2n—l7 fFﬁzn)'

Therefore, we have

de (G, Ge,.y) = Rde (G2, Ge,) for alln > 1 (12)
From (12), by induction and Lemma (1.6.7) (iii), we get
de (Gep, Gendy) = Rder (Gey, Ge,) for alln € N (13)

Now, we shall show that {G.,} is a Cauchy sequence in E.
For m > n, by using triangle inequality and (13) we have
de (Ge,, Gey) Zde (Gep,Gepy) +der (Gepyyy Gepy) + -+ dos (Ge,y, G
< (R AR R B de (Ggy Gey)
<R 4+ B RS2 B[ des (G, Gy ) [1IC
&M+ R+ -+ E e (Gegs Gey) [11E

= LA || de (Gey, Ge,) [|[IG — 0 as n — oo.

ol

Hence {G.,} is a Cauchy sequence. Now as,(E,C,d.) be a complete C*-

algebra valued fuzzy soft metric space, {G.,} converges to some G. € E.
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Therefore,

lim G, = lim fF,, , =Go. (14)

n—oo n—oo

As Go,, = [Funy1 and f(E) is closed, we have Gy € f(E). Hence there exist
F. € E, such that fF. = G.. From the contraction type condition (3) and

(11), we obtain

DNC* (fFe’vsFe’) c* (ch' chan)JrD (fFE2ﬂ,+27SFCI)

= d.
dc (fFe’ f 52n+2) +HC* (SFe’ SF52n+17)
2des (f

oo (FFs fFesn) + ide (FFo, fFusiys)
+ (D (fF, SFo) + D (fFepyss SF ) )
ta (D, fFu,SF.,..) + D (fFeW,SFe/))
< dy (fFu. fF.,,,,) +ade (FFy. fF.,....)

(
+a (Dr* (pr’ SFe’) + Dc* (fFe2"+1 ) fF€2n+2)>
+a (Dr* (fFe ’fFezn+2) + Dc* (fFegn+1 SF ))
which implies
Do (fFu,SFs) = (1= a) e (fFo, fFoy,.) + (1 — @) ade (fFu, fFuy,..,)
+(1 - &)71& (D~C* (.fF€2n+17 .fFezn+2))
+(1 - &)71& (D~C* (fFe’v .fF52n+2) + D~c* (fFezn+17 SFe’))
Letting n — oo in the above inequality and ||(1 —a)~'a|| < 1, using (14), we
get D (fF.,SF.) = 0. Hence, as SF, is closed, fF, € SF,

Now we give an example to illustrate our Theorem 3.2.6.

Example 3.2.7. Let E = {ey,ez,e3,e4},U = {a,b,c,d}

76



and C' = {ey, 2, e3} be a subset of E. Define fuzzy soft set as,

€ = {%.3, bo.4: o1, do.2}7 €y = {(1'0.6-, bo.7, co.s, d0.4}7

(Fg,C) =
€3 = {ao.& bo.9, Co.65 do.7}

F, = HFe, = {a03,b0.4, 01, do2}, Fe, = KF., = {aos; bo7, cos, do.a}

Foy = wr., = {aos, bog, cos, dor}

and FSC(Fg) = {F,,, F.,, F.,.}, let E be absolute fuzzy soft set, that is E(e) =
Tforalle € E, and C' = My(R(C)*), be the C*-algebra. Define dy: ExE — C

by de(F,,, Fy,) = (Inf{|F,, (a)— F.,(a)|/a € C},0), then obviously (E, C', d.+)

is a complete C*-algebra valued fuzzy soft(metric space. We define S: E —

CB(E) by SF,,(a) = FQ + 2, ft E~'Eby fF., =F, foralla € U and

F., € E. Notice that,
fF., =F.,, ={03,04,0.1,0.2} and fF., = F,, = {0.6,0.7,0.5,0.4} . Thus,
inf{m’J’aR1 (s) — M}F2(5)|/s € C} =inf{0.3,0.3,0.2,0.4} = 0.2.
- 02 0
Hence do«(fF.,, fF.,) =
0 02

Also, we have

dc*(SFEUSFEz)(a) = (inf{‘SFm(a) - SFez(a)‘/a € C},O)

_ 0.06
= (inf{0.135,0.165,0.12,0.06},0) =
0 0.06
016 0
=<
0 0.6
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=

j ch*(fFeufFG‘z)

08 0
Here ¢ = with ||¢|| = 0.8 < 1. Therefore, (3) holds for all

0 038
E,.,F,, € E. Also, the other hypotheses (4;) and (Ay) are satisfied. It is

seen that S(0.2) = f(0.2) = 0.2. Therefore, S and f have the coincidence at
the point F., = 0.2.

Corollary 3.2.8. Let (E, C, d;) be a complete C*-algebra valued fuzzy
soft metric space. Let S: E — CB (E) be a pair of multivalued map. Suppose

that

H.(SF.,,SF,) =< ad.(F,, F,)+a (D;*(FQNSFEI)+[56*(F627SF62))

“Fd (ﬁc*(F617SF62)+D~C*(F627SF61)> (15)

for all F,,, F,, € F, where a € C,with [la|| < 1. Then there exist a point

F. e E such that F, € SF..
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CHAPTER 4

UNIQUE COMMON FIXED POINT THEOREM FOR FOUR MAPS IN
COMPLEX VALUED S—METRIC SPACES

In this chapter we obtain a common fixed point theorem for the two weakly
compatible pairs of mappings satisfying a contractive condition in complex val-
ued S-metric spaces. Also we give an example to illustrate our main theorem.

In 2016 Naval Singh et al.[68] proved the following theorem in complex
valued metric spaces as follows.

Theorem 4.1.(Navalsingh et al.[68]): Let (X,d) be a complete complex
valued metric space and S, 7 : X — X. If 3 mappings A, p1,7,0 : X x X xX —
R* such that for all 2,y € X,

(a)AN(T'Sz,y,a) < A(z,y,a) and N, STy, a) < X x,y,a),
TSz, y,a) < p(r,y,a) and p(w; STy, a) < u(z,y,a),
ATSz,y,a) < A(w,y,0) and4(x, STy,a) < 1(x,y,0).
0(TSz,y,a) < d(x,y,a)and §(x, STy, a) < é(z,y,a),

(b)
d(Sa, Ty) 3 M.y, a)d(x, y) + p(z,y, ) EEEEEID 4 (2, y, o) W5EdEln)
o d(z,Sz)d(w,Ty)+d(y,Ty)d(y,5z)
+ol@,y, &) Ny e

(¢) Mz,y,a) + p(zr,y,a) + v(z,y,a) + 6(z,y,a) < 1, then S and T have a
unique common fixed point.

In this chapter we generalize the Theorem 4.1 in complex valued S-metric
spaces for four maps satisfying more general contractive condition using 7
functions.

First we prove a proposition which is needed to prove our main Theorem.
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Proposition 4.2: Let (X,S) be a complex valued S-metric space and
F.G,f,g: X — X. Let yo € X and define the sequence {y,} by
Yont1 = 9T2p1 = F2n;  Yoni2 = [Topi2 = Gropir. Vi =0,1,2....

Assume that there exists a mapping A; : X x X x X — R* such that

(1) M(Fr,y,a) < Mi(fr,y,a) and A\ (2, Gy, a) < \i(z, gy, a)

(1) M (Ga,y,a) < M(ge,y.a) and iz, Fy, a) < Ai(, [y, a).

V z,y € X and for a fixed element ¢ € X and n=0,1,2, ...
Then A1 (y2n, ¥, a) < A (yo,y,a) and
M@, Yoni1,0) < M@, 91,0),¥ 2,y € X,
Proof: Let z,y € X and n =0,1,2... Then we have
M (Yzn, y, a) = M(Gron-1, 9, ) < Ai(g72n-1,9, a)
= M (Yan—1,9,0) = M(Fron 2,9, a) < M(frois,y,a)
= M1 (Yan—2, ¥, @) = Ai(Gran—3,y,a) < M(gban-3,y, a)
= M(Y2n-3,,0) - = My, y, a).
Thus A1 (y2n, ¥, a) < (o, 9, a).
Similarly we have
M (T, Yant1, @) = A (2, Faon, a) < A\i(z, fron, a)
= M (2, Yon, a) = M(x, Grop_1,a) < M (2, gron_1,a)
= X (2,y2n—1,0) = M (2, Fron_o,a) < M\ (z, fro,_2,a)
= M7, y2n-2,0) -+ = M (2,91, 0).
Thus Ay (2, Yans1,a) < M(x,y1,a).
Now we give our main theorem.
Theorem 4.3. Let (X, S) be a complex valued S-metric space and

F.G, f,g: X — X satisfying the conditions .
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43.1) GX C fX and FX C gX,

(4.3.1)
(4.3.2) The pairs (F, f) and (G, g) are weakly compatible ,
(4.3.3) fX or gX is a complete subspace of X,

(4.3.4) If there exist mappings A1, Ao, A3, A, Az, Ag, A7 1 X X X x X — R such
that A\, (Fa,y,a) < M\ (f,y,a); M(Ga,y,a) < N (92,y,a) and A\, (z, Fy,a) <
Mo(@, fy,a); Mz, Gy, a) < Nz, 9y,a),Yn=1,23.,7 forall z, y € X and

for a fixed element a € X,

(4.3.5)

S(Fz, Fz,Gy) 3 M(fz,gy,0)S(fz, fz,gy) + No(fx,9y,0)S(fz, fr, Fx)
+As(fz, g9y, a

+Ma(fx, 9y, a)[S(gy, gy, Fx) + S(fz, fz, Gy))

)5(9y, 9y, Gy)

)

#ul o) (AU en)
ol g0.0) (SR )
(

; S(fz fr,Fz)S(fa,fe,Gy)+S(9y,9y.Gy)S(9y.9y,Fx)
+Ar(f, g, a) ( 1+5(.Jo.Gy) +5(gy.99,F'2) )

vV, y € X and for a fixed element a € X, where
(4.3.6) (M + X+ A3+ 20 + A5+ Ao + A7) (x,y,a) < 1.
Then F,G, f and g have a unique common fixed point.
Proof: Let g € X be an arbitrary point.
We define a sequence {y,} in X such that yo,+1 = gran41 = Fra, and

Yont2 = fTonto = GTopi1,n =0,1,2, ...
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From (4.3.5), we have

S(Yon+1, Y2nt1, Yont2)

= S(Fxon, Fron, Groni1)

2 M (Wans Yanr1, @) S (Yo, Yons Yant1) + A2 (Yan, Yant1, @) S (Yan, Yon, Yons1)
+A3(Y2n, Yont1, @) S (Yont1, Yon+1, Yont2)

+A1(Y2n, Yon+1, @) [S(Y2nt1s Yont1, Yont1) + S (Yan, Yons Yons2)]

S(W2n,y2n,Y2n+1)S(Y2n+1,Y2n+1,Y2n+2)
+As5(Yon, Yont1, @ ( 1+S(Y2n,Y2n,Y2n+1)

+X6(Y2n, Yon+1, @

S(y2n+1,y2n+1,Y2041) S (Y2n Y2n Y2n+1)
1+S(y2n,Y2n,y2n+1)

) S(W2n,y2n,y2n+1)S(Y2n,Y2n,Y2n+2)+S(Y2n+1,¥2n+1,Y2n42) S (Y2n+1,Y2n+1,Y2n+1) )

+)\7 Y2ns Yant1, & ( 1+S(y2n,Y2n,Y2n+1)+S(Y2n+1,Y2n+1:Y2n+1)

Since S(x,z,z) = 0, we have

|S(y2n+1,y2n+17y2n+2)| < A (Yans Yont1s a,) ‘S(y2n7y2n7 y2n+1)|
+X2(Y2ns Yon1: @) [S (Yars Yans Yons1)|
FA3(Yon, Yont1, @) | S Want1, Yont1: Yoni2)|

FAa(Yon Yon1, @) [S(Yans Yons Yons1)|

14+5( U2nﬂ/2mu2n+1)

+A5(Y2n, Yans1, @ |S Yon+1s Y2n+1, Y2n42 \‘

1+5( 1/2ny"/2ny1/2n+2)

( a)
( )|8¢
( )S(
FA1(Y2n Yot @) 1S (Yons1, Yont1s Yons2)|
( )1S(
( a)|S(

+A7(Y2ns Yon+1, @) [S (Y2ns Y2ns Yont1 \‘

|S(y2n+l s Yon+1, y2n+2)| S (>\1 + >\2 + >\4 + A?)(y2n7 Yon+1, CL) |S(y2n7 Yon,, y2n+l)‘
Az + A+ A5) (Yan, Yant1, @) [S(Yans1s Yont1s Yanta)| -
Using Proposition 4.2, we get
[S(Y2n+1, Yont1: Yont2)| < (A1 + Az + Aa 4+ A7) (Yo, y1, @) 1S (Yon, Yon, Yon+1)]
+(A3 4+ As + A5) (Yo, Y1, @) |S(Yant1, Yont1: Yon+2) ]

which in turn implies that

AL+ Aa+A 1,
St Yon i1, nsz)] < (GERERLLBDY |51y, o))
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_ [ QatAe+Aa+A7) (wo,y1,0)
Let iy = ( 1=(As+A4+25) (yo.y1,0) )

Thus [S(Y2n+1, Yont1: Yans2)| < b1 1S (Yon, Yo, Y2ns1)] - (1)

Similarly using S(z,y,y) = S(z,z,y) and proceeding as above we can show

that [S(Yant2, Yont2: Yons)| < ha [S(Yontt1s Yons1, Yant2)] (2)

(/\1+/\3+/\4+)\7)(yoyy17a))

where h; = ( 1—(A2+Aa+25) (yo,y1.0)

Let h = max{hy, ha}, then 0 < h < 1, since hy, hy € RY.

Hence from (1) and (2), we have [S(yn, Yn; Yns1)| < B[S (Yn-1,Yn-1,9n)],

[S (W Yi> Y1) | < IS (Wr-1, Yr—1, Uk

<n? [S (Yr—2, Yk—2: Yr—1)]

< WIS (yos w0, 1) (3)
—07as k— o0 (4)

Hence for any m > n,"we have
‘S(ynv Yn, yn+1>| + !S(yn+17 Yn+1, yn+2)‘ +
et |S(ym717ymflvym)‘
= 2(h"+h" g 4R [S (Yo Yo, y1)| from(3)
< 25 15 Wos v, 1)

‘S(ynyynyym)‘ S fﬁ; |S(y0~,y07y1)‘ — 0 as m,n — oQ.

Hence {y,} is a Cauchy sequence in X.
Now suppose fX is a complete subspace of X. Since ya,i2 = fran12 € f(X)
and {y,} is a Cauchy sequence, there exists z € f(X) such that yo,40 — z as

n — oQ.
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Then there exists v € X such that fu = z.
Thus 7}1}(}1() Fxo, = llm JTopi1 = llm Gropy1 = hm fTonio = 2.
Consider
S(Fu, Fu, Gra,i1)
T A(fus Yo, @) S(fu, fu, yangr)

+Xo(fu, yont1, a)S(fu, fu, Fu)

+)‘4(fu Yon+1, A [ (y2n+1- Yon+1, FU) + S(fu fu> y2n+2)]

+)\5 fu Yoni1, @ <5(fu JSfu, Fu)S(yont1,y2n41, 1/2n+2))

a)

FA3(ft, Y2nt1, @) S (Yont1, Yont1s Yont2)
)
a)

1+S(fu,fu,yzn+1)

S(y2n nt1,0u)S n
a1y, ) (L LS

+)\7 fu Yoni1, @ <~5(fu Jfu, Fu) S(fu, fu,yant2)+S(Yont1,Y204 1,¥2n42) S(Y2n41,Y2n 41, Fu))

1+S(fu, fuyznt2)+S (Y2at1,y2n+1,Fu)
|S(Fu, Fu, Grony1)]
< Mi(fu,yonsn, @)|S(fu, fu, yonia)]
A2 (fu, yani1, @)|S(fu, fu, Fu)l
FA3(fu Yani1: @)|S (Yont1, Yons s Yont2))|

a)
)
FAa(fu, Yont1, @)|S(WYons1, Yont1, Fu) + S(fu, fu, yonio)]
s (fU, Yansr, @) <\5(fu SuFW)|[S(Want1.y2n 41 yzn+2)\>
)
)

[1+S(fu, fuy2n+1)]

[S(y2n+1,y2n+1,Fu)|[S(fu,fuy2ni2)]
+6(fu, Yan i1, a < - 1+§(fu fuyant)] - >

[S(fufu, FWIIS(fu, fuy2n+2)[+]1S(W2n 41,920+ 1:y2n+2) [|S @2nt1,92n-+1,Fu)|
+)\7(f’LL Yansr, @ < [1+S(fu, fuyznt2)+S(Yan+1,y2n41,Fu)] .

Letting n — oo and using Lemma 1.8.5 (Ch-1) and Lemma 1.8.7 (Ch-1),

we get

[S(Fu, Fu,z)| < X(z,z,a) |S(z, 2, Fu)| + M\i(z, z,a) |S(z, z, Fu)|
from (4), Lemma 1.8.5 (Ch-1)

(1= (A4 X)(2,2,0)) |S(z, 2, Fu)| <0

which in turn yields from (4.3.6) that |S(Fu, Fu,z)| < 0.
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Therefore |S(Fu, Fu, z)| = 0. Hence Fu = z. Thus fu= Fu = z.
Since F'X C gX, there exists v € X such that Fu = gv.
Thus fu=Fu=gv ==z

Again from (4.3.5), we have

(2, 2, Gv)| = |S(Fu, Fu, Gv)|
< Mi(fu, gv, a)[S(fu, fu, gv)| + Ao (fu, gv. a)[S(fu, fu, Fu)|
+As3(fu, gv, a)|S(gv, gv, Gv)|
+Aa(fu, gv,a)|S(gv, gv, Fu) + S(fu, fu, Gv)]|

)
( )
+X5(fu, gv, a) ('S(fﬁ{ié{}i‘?ig;if Gb)‘)
( )
( )

[S(gv.gv, Fu)||S(fu,fu,Gv)|
+A6(fu, gv,a ( [1+S(fu, fu,gv)| )

|S(fu, fu,Fu)||S(fu.fu,Gv)|+]S(gv,gv,Gv)||S(gv,gv,Fu)|
+>‘7 fU gv,a ( [14+S(fu, fu,Gv)+S(gv,gv,Fu)| )

so that

[S(z,2,Gv)| < Xs3(z, 2,a) [S(z, 2, GU)| + Ma(z, 2,a) |S(z, z, Gv)|.
(1= (A3 +A\1)(2,2,0)) [S(z, 2,Gv) <0

which in turn yields from(4.3.6) that |S(z, z, Gv)| < 0.

Therefore |S(z, z, Gv)| = 0. Hence Gv = 2.

Thus Gv =z = fu= Fu = gv. (5)
Since (F, f) is weakly compatible,

we have fz = fFu= Ffu= Fz. (6)

S(Fz, Fz,z) = S(Fz, Fz,Gv)
S Mi(fz,gv.a)S(f2, fz,9v) + Xa(f2, gv,0)S(f 2, f2, Fz)
+A3(f2, gv, a)S(gv, gv, Gov)
+Ai(f2, gv, a)[S(gv, gv, Fz) + S(fz, fz,Gv)]

S(fz,fz,Fz)S(gv,gv,Gv)
+X5(fz, v, a) <W)



S(gv Fz)S ,Gv
ho(f 7 gv, ) (LS Lalucn)

S(fz,fz,Fz)S(fzfz,Gv)+S(gv,gv,Gv)S(gv,qv,F z)
+A7 fZ 9v, a) ( 14+5(fz,.f2,Gv)+S(gv,gv,Fz) )

= N(Fz,z,a0)S(Fz,Fz, z)
+M(Fz,2,a)[S(z, 2, Fz) + S(Fz, Fz, 2))

)
PP, 2,0) (SEREEE2) from (5) and (6)

|S(Fz,Fz,z)| < M(Fz,z,0) |S(Fz, Fz,2)| + \M(Fz,2,a) |S(z,2,Fz) + S(Fz, Fz, z)|

S(Fz,Fzz
+X6(Fz,2,a)|S(z 2, Fz)| )m )

(I =M+ 2M+X)(Fz,2,a) |S(Fz, Fz,2)| <0

which in turn yields from (4.3.6) that |S(Fz, Fz, z)| < 0.

Therefore |S(Fz, Fz,z)| = 0. Hence Fz = z.Thus z = Fz = f=z. (7)
Since the pair (G, g) is weakly compatible,

we have gz = gGv = Ggv = Gz. (8)
From (4.3.5)

S(z,2,Gz) = S(Fz, Fz,Gz)
SM(fz,92,0)S(fz, f2,92) + Ma(fz,92,a0)S(fz, [z, Fz)
+A3(fz,92,a)S(92, 92, Gz) + \a(fz,92,a)[S(9z, 92, Fz) + S(fz, f2,Gz)]
Fhs(fz, gz, a) (AfppRslmge))
+X6(fz,92,a) ( 1+5(F 2 f 7,92)
( )

S(fz.fzFz)S(fzfz,Gz)+5(92,92,Gz)S(92,92,Fz)
+)\7 fZ" 9z, a ( 1+S(fz,f2,Gz)+5S(9z,92,Fz) >

S(92,92.F2)S(fz,fz, Cz))

[S(z,2,G2)| < Mi(z,Gz,a)|S(2,2,G2)| + \(z,Gz,a) |S(Gz,Gz, 2) + S(z, 2, Gz))|

FX6(2,G2,0) 1S(G2, Gz, 2)| [ 262525 | from (7). (8)

(T = (M 42X+ X)(2,Gz,a)) |S(2,2,G2)| <0
which in turn yields from (4.3.6) that |S(z,z,Gz)| < 0.

Therefore |S(z, 2z, Gz)| = 0.Hence Gz = z, so that Gz = gz = 2. 9)
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Thus from (7) and (9), z is a common fixed point of F, G, f and g.
For uniqueness, let z* € X be such that fz* = Fz* = 2* = g2* = Gz*.
Now from (4.3.5)
S(z,2,2*) = S(Fz,Fz,Gz*)
SIN(fz,92%,0)S(fz, f2,92%) + Na(f2z,92%,0)S(f 2, fz, Fz)
+A3(fz,92%,a)S(gz*, g2, G=¥)
+M(f2,927,0)[S(g2%, 927, Fz) + S(f2, f2,G2")]
o292 (SR 0)
s(f2, 92*, a) (S(gz",gz*,Fz)S(fz,fz,Gz*))
(

1+S(fz, fz,g2*)

. * S(fz,fz,Fz)S(fz,f2,Gz*)+S(gz* ,92*,Gz*)S(gz* ,g2* ,Fz)
+A7(fz, 92", a) ( T+5(f2,f2.G2")+S(gz" gz~ Fz) ) :

|S(Z Z, Z*)‘ < /\1(2’72*70) IS(Z7 272*)|
—‘,-)\4(257 Z*7(]‘) |S(Z*,Z*7 Z) + S(Z,Z7 Z*)l

Fho(z,25) 1S(, 27,2 |2l

[S(z,2,2%)| < (A1 42X\ + Xg) (25 2%, a) |S(2, 2, 27)].

(1= (A1 420 + Xo) (2, 25a)) |S(2, 2, 2%)| <0

which in turn yields from (4.3.6) that |S(z, z, z*)] < 0.

Therfore |S(z, z,2*)| = 0. Thus z = z*.

Hence z is the unique common fixed point of F, G, f and g.

Similarly we can prove the theorem if gX is a complete subspace of X.

Now we give an example to illustrate our main Theorem 4.3.

Example 4.4. Let X = [0,1] and S : X x X x X — C be defined by
S(x,y,2) = |x—z|+ily—z|. Then (X, S) is a complex valued S- metric space.
Define F,G, f and g : X — X by Fr = 5, Gx = {5, fv = § and gz = 3, for
all x € X. For fixed element a = %,

define )\1,A2,)\3,A4,)\5,A6,)\7 XXX XX — [0, 1] by
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22,2

Mz, y,a) = (ﬁ+73 a), Aao(w,y, a) = 5§, As(@,y, a) = =g+,
23 a 22903
A4(1‘7y’ ) 1110 )‘ (I Y, a )_ L )‘G(x Y, a ): 5y0 ’

Mlz,y,a) =22 Vo y e X.

Then
>\1 ('777 Y, (l) + /\2(‘7’.7 Y, (],) + )‘3(7"7.7/7 (1,) + 2>\4(‘T7 Y, (Z) + >\5(I7 Y, G,)
+ )\G(x7 Y, a) + )‘7(I7 Y, a)

2,22 3,3,3

3 3 3 2,03 3,2
zya zoy“a z Yy ar >ty ta zya zy°a
(40 + 50 + (J,) + 10 + 10 + 2( 10 ) + 10 + 50 + 40

5 1 1
S(ip+sT3) +3 a0+t o0+ @0 T 360

__ 3442
5400 <L

Hence (A1 + Ao+ A3+ 20 + A5 + X + A7) (2, y,a) < 1.

We have \i(Fz,y,a) = M (35,9, a) = (555 + & + @) and

M(fz,y.a) = (5 y,0) = (155 + 55 + @)

clearly A\ (Fz,y,a) < M\ (fx,y,a).

We haved(z, Fiy,a) = A (v, 5, a) = (35 +4h +a) and
Mz, fy,a) = Mz, §,a) = (55 + g5 F@)

clearly\i (z, Fy,a) < M\ (z, fy, a).

We have \i(Gz,y,a) = M (35,9, a) = (55 + & + @) and

Mgz, y,a) = M(5,y,0) = (355 + 5 + @)

clearly A\ (Gz,y,a) < \(gz,y,a).

We have A (z, Gy, a) = M(x, 35, a) = (& + &5 + a) and

Mz, gy,a) = M, §,a0) = (5 + 15 +a

clearly A\ (z, Gy, a) < M (x, gy, a).

Similarly we can prove that

Aa(Fz,y,a) < A(fz,y,a), A(x, Fy, a) < Au(z, fy,a) and

>\TL(G$7y7 a) S ATl,(‘g‘,'v7 y7 a’)7>\n(‘r’ Gy7 a) S An(ngyv a) v n = 27 37 47 et
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Consider

[S(Fz, P, Gy)
= [5G %)

= I~ i il — 4
— 4013 - #1+ 5 - 40

<zl — 41+l - 4l
< (gt + )5 —4+is -4l

= M(fz,9y,a)S(fz, fz,gy)

< Ni(fz. gy, a)S(fz, fz,g9y) + Xo(fr, gy, a)S(fz, fx, Fx)

+As(fz, 9y,a)S(gy. 9y, Gy) + Ma(fz, gy.a)[S(gy, gy, Fz) + S(fz, fz,Gy)]

S(fz,fz,F'z)S(9y,9y,G1 S(gy,9y,F'z)S(fz,fr,G1
Fha(fa, gy, @) (SUAEEISACN ) 1 (i, gy, a) (SepbaSinluon)

(fz.fz,Fx)S(fz,fx,Gy)+5(9y.9y.Gy) S (9y,9y,F'x)
+ar(fz, gy, a) ( 14+5(f, fe,Gy)+S(gy,9y,F'z) )

Thus (4.3.5) is satisfied.

One can easily verify the remaining conditions of Theorem 4.3.

Clearly = 0 is the unique common fixed point of F, G, f and g.

This part of the work was published in ”Bulletin of International
Mathematical Virtual Intitute”, Vol.9, No. 1, November, 2018, pp

121-131.
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CHAPTER 5

COMMON AND COUPLED FIXED POINT THEOREMS IN S,-METRIC
SPACES

We divide Chapter 5 into two sections, namely, Section 5.1 and Section
5.2. The main aim of this Chapter is to prove common fixed point results and
coupled Suzuki type result in complex valued S, and S, metric spaces.
SECTION 5.1: UNIQUE COMMON FIXED POINT THEOREM

FOR FOUR MAPS IN COMPLEX VALUED S5,-METRIC SPACES

Recently N.Priyobarta et al.[72] proved the following theorem in complex
valued Sp-metric spaces as follows.

Theorem 5.1.1.(N.Priyobarta et al.[72]): Let (X, S) be a complete com-
plex valued Sy-metric space and the mapping, f: X — X satisfies for every
r,y € X

S(fa, fx, fy) 3 (S, fx) + S(y.y. )
where o € [0,1). Then f has a unique fixed point.
In this section we generalize the Theorem 5.1.1 for two weakly compatible pairs
of mappings satisfying a contractive condition in complex valued Sp-metric
spaces. An example is also given to validate our result.

Theorem 5.1.2. Let (X, S) be a complex valued S,-metric space with
coefficient b > 1 and F, G, f,g : X — X satisfying the conditions.

(5.1.2.1) GX C fX and FX CgX,
(5.1.2.2) the pairs (F, f) and (G, g) are weakly compatible ,

(5.1.2.3) fX or gX is a complete subspace of X,
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S(fz, f,gy), S(fx, fr, Fx),

S(fx, f2,F2)S(gy,99.C
S(gy, gy, Gy), *eLeroSlomanc)

Vx,y € X and « is real with 0 < o < %

(5.1.2.4) S(Fx, Fz,Gy) 3 o max

Then F, G, f and g have a unique common fixed point.

Proof: Let g € X be an arbitrary point.

We define a sequence {y,} in X such that ys,+1 = gra,41 = Fro, and
Yont2 = fTonto = GTopi1,n =0,1,2, ...

From (5.1.2.4), we have

S(y2n+17 Yon+1, y2n+2)

= S(FIZny F‘T2‘IL7 GIZWH»I)

S(.f'/'I;Qn', fonv gx2n+1)7 S(fony ,fx2n7 F$2n)7
= @ max
S(fx2n,ft20,F120)S(922n+1,9%2n+1,G22n41)
S(g%2nt1; gTans1, Goani1 )¢ 1+S(F 2, Fran.Grzo 1)
S(Yan Yan, Yant1)s S (Y20 Yon, Yont1),
= (@ Mmax
S(Y2n,Y2n,Y2n+1)S (Y2n+1,Y2n+1,Y2n+2)
S(y2n+l7 Yon+1, y2n+2)7 1S (Yant1,Y2nt1.Y2n12)

= max {S(Yan, Yon, Your1), S (Yont1, Yont1, Yant2) }-

If we assume that S(yani1, Yont1, Yonta) > S(Yan, Yons Y2nt1)-
Then S(Yant1, Yont1, Yonr2) 3 @S (Yant1, Yont1s Yons2)
[S(Yon+1, Yont1: Yont2)| < @ 1S (Yon, Yons Yons1)]

(1 =) [S(Yant1, Yont1, Yons2)| <0

Since 0 < a < 1, we get |[S(Y2n+1, Y2nt1, Y2nt2)| < 0.

It is a contradiction .

Thus [S(Yant1, Yon+1: Yons2)| < @[S (Yans Yans Yons1)| - (1)
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Now again from (5.1.2.4)
S(y2n+2, Yon+2, y2n+3)
= S(Grani1, Gronit, Fonya). Since S(x,z,y) = S(y,y, ), weget
= S(F$2n+27 Fropyo, G$2n+1)

S(f$2n+27 f$2n+27 9$2n+1)7 S(fI2n+2~, fI2n+2) F$2n+2)7

=< a max
o S(frant2,front2, Fronyt2)S(92n+1,9%2n41,G2n+1)
S(972n+15 9T2n+1, GTant1), 155(Faom sz, FoomramGaons1)
S(y2n+2, Yon+2, y2n+1), S(y2n+27 Yon+2, y2n+3)
= a max

S(y2nt2.y2nt2:Y2n+3)S(Y2nt1,Y2n+1:Y2n+2)
1+S5(y2n+3,Y2n+3,Y2n+2)

S(Yon+1s Yont1: Yan+2),
= v max {S(y2n+l’y2n+l7y2n+2)7S(y2n+27y2n+27y2n+3)}-

If we assume that S(yan+2, Y2n+2, Yonss) > S(Yont1s Yant1, Yant2)-
Then S(yont2, Yon+2, Yon+3) T & S(Yant2, Yont2, Yon+s)
IS (Y2n+1, Yont1s Yanta2)| < @[S (Yan, Yons Yont)]
(1 —a) [S(Y2n+2, Yant2, Yont3)] < 0.
Since 0 < « < 1, we have |S(yan+2, Yon+2s Yons3)| < 0.
It is a contradiction .
Thus |S(y2n+2; Y2nt2: Y2nts)| < 1S (Yons1, Yons1, Yons2)| - (2)
Continuing in this way , we get

1S (Yns Yy Y1) < @ |S(Yn-1, Yn—1.9n)|, for n=1,2,3,.....

Hence

1S (s Yres Yrr1| < @[S(Yr—1, Yr—1, s

<a? [S(Yr—2: Ye—2: Y1l

S ak|S(y07y07yl| (3)

— Oask —
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Hence foe any m > n we have

IS (Y Yns Ym)|

“ 9 [S (U Yns U1 )| 4 0[S (Ynt1s Unt1, Yns2)| + 02 1S (Ynt2s Ynso, Ynss)| +
R = 5 S Wt Yo,

<% ™ [S (Yo, Yo, y1)| + ba™ 1 [S (o, yo, y1)| + 6™ [S(yo, Yo, y1)| +

- E— + 0L am™ S (yo, yo, v1)|
<2ba"[L+ba+(ba)?+....... + (b @)™ 1S (yo, Yo, y1)]

< 22015 (o, Yo, 1)

‘S(yny Yns ym)‘ S 123(;,1; ‘S(y()v Yo, yl)' — 0 as m,n — oQ.

Definition 1.10.1(Ch-1), we have

S(x,y,2) 3b(S(x,z,a) + S(y,y,a) + S(z,2,a)) for all z,y,z,a € X.

By using above condition, we have,

S Yns Yms Y1) 3 00S Y Ynos Ym) + SWons Y Ym) + S, Y1, Ym))

Letting n,m,l — oo.

We obtain |S(Yn, Ym, y1)| = 0.

Thus {y,} is Complex valued S,-Cauchy sequence.

Now suppose fX is a complete subspace of X. Since Yo, 12 = froni2 € f(X)
and {y,} is a S, Cauchy sequence, there exists z € f(X) such that yon40 — 2z
as n — 0o. Then there exists u € X such that fu = z.

Thus lim Fx,, = nh—{lgo JTopi1 = nhj{.lo Gropy1 = 7}1_{1()10 fronio = 2.

n—oo

Now we show that Fu = fu = z.

S(Fu, Fu, z)
I b[2S(Fu, Fu,Groni1) + S(z, 2, Grani1]
=2b S(Fu, Fu, Groni1) +bS(2, 2, Grany1)
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S(fu, fu, gons1), S(fu, fu, Fu),
320 o max ¢ S(gronin, 9ot Gransr), +b5(2, 2, Gran 1)

S(fu,fu,Fu)S(gaan+1,972n41,GT2n41)
1+S(Fu,Fu,Gran4+1)

letting n — oo, we get

S(z,2,2)|,15(z, z, Fu)|,
|S(Fu, Fu,z)| <2b o max IS¢ 1 15€ ) +0|5(z, 2, 2)|

[S(z,2,Fu)||S(2,2,2) |
15(z,2,2)|, T+S(Fu,Fu,2)|
=2b o |S(Fu, Fu,z)|

(1—2ba)|S(Fu,Fu,z)| <0.

Since 0 < a < 35, we get [S(Fu, z,z)| <O0.
Thus |(S(Fu, z, z)| = 0.

Hence Fu = z. Thus fu= Fu=z.

Since FX C ¢gX, there exists v € X such that Fu= gv.
Thus fu=Fu=gv=z.

Now we prove that Gv = gv = 2.

S(z,z,Gv)

= S(Gv, Gv, z)

20 [25(Gv, Gu, Faay,) + S(z, 2, Fra,))
= 2bS(Gv, Gv, Fray,) + bS(z, 2, Fxay,)
= 2bS(F o, Fro,, Gv) + bS(z, 2, Faa,)

S(fIQTL’ fIZn,ﬁ QU) S(fIZn fIZTL’ Fx?n)7
< 2b o max 7 7 +0S(2, 2, Fxay,)
S(fzan,fron,Fran)S(gv.gv,.G
S(gv7 guv, GU)7 (j1\21-#]?(21«‘12:,21";275?23)1) )
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letting n — oo

S(Z7Z7Z)7S(Z~,Z7Z)7
S(z,z,Gv) = 2b @ max B o +b5(z,2,2)
5(z 2 Gv), JGR2EET
=2ba S(z,z,Gv)
[S(z, z, Gv)| < 2b |aS(z, 2, Gv)]

(1=2ba)|S(z,2,Gv)| <O0.

Since 0 < a < 5 such that [S(z,z, Gv)| < 0. It implies that |S(z, z, Gv)| = 0.
Thus Gv = z. Hence Gv = z = fu= Fu = gv. (4)

Since (F, f) is weakly compatible, we have

fz=fFu=Ffu=Fz. (5)

Now

S(Fz,Fz,z) 32bS(Fz, Fz, Guopy 1) +65(2, 2, Gy i)
S(fzafz7g'r2n+l)7 S(fZ,fZ,FZL

/-\</ 2b a max S(ngTH»L, 9Ton+1, GI271,+1)~, + bS(Z, Z Gx2"+1)

S(fz,fz,Fz)S(922n+41,9%2n+1,GTon+1)
1+S(Fz,Fz,Gxani1)

letting n — oo, we have

S(Fz,Fz,z2),S(Fz Fz Fz),
S(Fz,Fz,z) 3 2b a max +0bS(z,2,2)
S(Z 2 Z) S(Fz,Fz,Fz)S(z,2,2)
1D 1+S(Fz,Fz,z)

=2ba S(Fz, Fz,z)
|S(Fz,Fz,2z)| <2b a|S(Fz,Fz, z)|
(1—-2ba)|S(Fz Fz,z)] <0.

Since 0 < a < o, we get [S(Fz, Fz,2)| <0.

It implies that |S(Fz, Fz, z)| = 0. Hence Fz = z.
Thus z = fz = F=. (6)



Since the pair (G, g) is weakly compatible, we have gz = gGv = Ggv = G=z.

Now

S(z,2,Gz)

= S5(Gz,Gz,z2)

2 20S(Gz, Gz, Froni1) +bS(z, 2, Fon 1)

= 2bS(Fwoni1, Froni1, G2) +bS(2, 2, Fran 1)

S(front1, front1, 92), S(frans, frontr, Frony1),
= 2b a max

S(fr2nt1,fron+1,Froni1)S(92,92,G2)
S(QZ, 9z GZ)’ 14+S(Faon+1,Front1,G2)

+0S(2, 2, Frany1)

letting n — oo, we have

S(Z7 Z7 Z)7 S(Z7 Z7 Z)’
S(z,2z,Gz) = 2b @ max . A +0S(z, 2, 2)
S(z,2,G), Sazgfizen
=2ba S(z,2Gz)
|S(z,2,Gz)| < alS(z, 2, Gz)|

(1 —2ba) |S(z,2,G2)| <0.

: 1
Since 0 < o < 57,

Hence Gz = gz = z. (7)

we get [S(z,z,Gz)| <0. It imples that [S(z, z,Gz)| = 0.

Thus from (6) and (7), z is a common fixed point of F, G, f and g.
For uniqueness,

let z* € X be such that fz* = Fz* = 2* = gz* = G2*.

S(z,2,2%) = S(Fz,Fz,Gz*)

S(:fz7 .fz7 gz*)7 S(:fz'/ ..fz'/ Fz)7

* * «\ S(fz,fz,Fz)S(gz*,gz* ,Gz*
S(gz y 9% 7GZ )7 (lefiS(ZF)'z,(}gz,ngi) =

=< a max
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S(Z./ z7 Z*)7 S(Z7 z? z)7

x k) S(2,2,2)S(2",2%2%)
S(Z 1252 )7 14+5(z,2,2%)

= « max

=a S(z,z,2%)
[S(z,2,2%)| < a|S(z, 2, 2%)|
(1—0a)|S(z 2 2%)] <0.
Since 0 < a < 5 < 1, we get [S(z,z,2%)| < 0.
It implies that |S(z,z,2*)| = 0.
Hence z = z*.
Thus z is the unique common fixed point of F, G, f and g.
Now we give an example to illustrate our main Theorem 5.1.2
Example 5.1.3. Let X = [0,1] and S, : X*— C be defined by
Sp(z,y,2) = |v — 2|+ |y — 2. Then X is'a complex valued Sy-metric space.
Define F,G, f and g : X — X by Fr= g—j,Ga: = z—:jx = g—j and
gr =% forall z € X. With o= < 1.
Consider

S(Fz, Fr,Gy)| = ]s (7 fyf)

811 817 4
_ ZAI yg 41;4 yS
i U R
1 et 48 ) 48
E[QT | tim— @

16 1S(fx, fz, gy)|
1 1S(fz, fz, gy)|
alS(fz, fz, gy)|
1S(fz, fz,gy)l . |S(fz, fz, Fx)],[S(gy. 9y, Gyl ,

IS(fx.f=.Fx)||S(9y.9y.Gy)|
[1+S(Fz,Fx,Gy)|

A

G max

IN

Thus (5.1.2.4) is satisfied.

One can easily verify remaining conditions of Theorem 5.1.2.

97



Clearly # = 0 is the unique common fixed point of F\ G, f and g.

From Theorem 5.1.2, we have the following corollary.

Corollary 5.1.4. Let (X,S) be a complete complex valued Sj, - metric
space with coefficient b > 1 and f : X — X be mapping satistying for all
r,ye X
S(fa, fz, fy) 3 o max{S(z,x,y), Sz, fx),S(y,y, fy), SEiporesin}

where 0 < o < 1. Then f has a unique fixed point.

98



SECTION 5.2: EXISTENCE AND UNIQUENESS OF COUPLED
SUZUKI TYPE RESULT IN S, METRIC SPACES

In the year 2008, Suzuki[103] generalized the Banach contraction principle

[84] as follows.
Theorem 5.2.1. (Suzuki [103]): Let (X, d) be a complete metric space and

let T' be a mapping on X. Define a non-increasing function 6 : [0,1) — (%, 1]

by
1 if 0<r<

(1—r)yr=2  if 5

0(r) =
if 22<r<1.

(1+7r)"t
Assume that there exists r € [0,1) such that

0(r)d(z,Tx) < d(z,y) = d(Tz,Ty) < rd(z,y)
for all z,y € X. Then there exists a unique fixed point z of 7. Moreover

lim, T"z = z for all z € X.
In the year 2016 S.Sedghi et al.[89] proved the following theorem in Sy

metric spaces.
Theorem 5.2.2. (S.Sedghi et al [89]): Suppose that f, g, M and T are self

mappings on a complete Sy-metric space (X, S) such that f(X) C T(X),

g(X) C M(X). If
S(Mz, Mz, Ty),S(fz, fz, Mx),S(gy, gy, Ty)

< 2ma&(
sS(Mz, Mz, gy) + S(fz, fz,Ty)

S(fe, fe.gy) < 33
holds for each z,y € X with 0 < ¢ <1 and b > % then f, g, M and T have a

unique common fixed point in X provided that M and T are continuous and

pairs {f, M} and {g,T} are compatible.
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In this section, we generalize the Theorem 5.2.2 and obtain a Suzuki type
common coupled fixed point theorem in Sy-metric spaces. We also furnish an
example which supports our main result.

Now we give our main theorem.

Theorem 5.2.3 Let (X, S}) be a Sy-metric space. Suppose that

C,D: X xX — X and P,Q: X — X be satisfying
(5.2.3.1) C(X x X) CQ(X),D(X x X) C P(X),
(5.2.3.2) {C, P} and {D, Q} are w-compatible pairs,
(5.2.3.3) one of P(X) or Q(X) is Sy-complete subspace of X,

( ,y),PI),Sb(D(u,U),D(U, v)qu)v

de min
(5.2.3.4) S(C Cly, ), Py), Sp(D(vyat)y D (v, u), Qu)
Sy(Pz, Pz, Qu),
< max
Sy(Py, Py, Qu)

implies that

b (S(Ca,y), Cla,y), D(w,0)) < o=t (M (,9,0,0)) — 6 (M (2,9, u,v))

507
for all z,y,u,v in X, where 1, ¢ : RTY — R™ are such that ¢ is linear and
monotone increasing function and ¢ is lower semi continuous, ¥(0) = ¢(0) = 0
and ¢(t) > 0, for all ¢ > 0 and

So(Pz, Pr, Qu), Sy(Py, Py, Qu),
S(Clw,y), Clw,y), Pr), Sy (Cly, x), Cy, x), Py),
M (x,y,u,v) = max Sy(D(u,v), D(u,v), Qu), Sp(D(v,u), D(v,u), Qv),
72 [S1(C(,9), Oz, y), Qu) + Sp(D(u, v), D(u,v), Pz)],

7 [S(C(y, 2), C(y, 2), Qu) + Sy(D(v,u), D(v, u), Py)]
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Then C, D, P and @ have a unique common coupled fixed point in X x X.
Proof: Let zg,y0 € X. From (5.2.3.1), we can construct the sequences

{zn}, {yn}, {20} and {w,} such that

(sz Yon) = QToni1 = Zon,

= Poni2 = Zon41,

)
Clyon: Tan) = Qyan+1 = Way,
D(22n41,Y2ns1)

)

D(y2n+17L2n+1 = Pyony2 = wopy1, n=0,1,2,---

Case (i): Suppose za;, = Zomi1 and Way, = Way,4; for some m.
Assume that 22p,11 # Zomi2 OF Womi1 7 Wamra-

Since

Sb(c($2m+2, y2m+2)7 C(I2m+2, y2m+2), PI2m+2);
)

Sb(D(12m+17 Yom+1), D(£¢'2m+17 y2m+1), Q$2m+1)7

% min
Sb(C(7/2m+27T2m+2) C(y2m+27x2m+2) PU2m+2)
Sb(D(y2m+1> I2m+1) (y2m+17 9C2m+1)7 Qy2m+1)

S max { SI)(PI277L+27 P‘T21n+27 QxZ'rrH»l)y Sl)(PyZ'rrL+27 Py2m+2<, Qy2m+l) } :

From (5.2.3.4), we have

w (S[1(C(I277L+27 y2m+2)7 C($2m+27 y2m+2)7 D(I2m+1~, y2m+l)))

1
< ww (]W (€E2m+27y2m+2,l’2m+1,y2m+1))*¢ (M (1‘2m+27y2m+27l‘2m+17’y2m+1))
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where

M (I2m+27 Yom+25 L2m+1, y2m+1)

Sp(Zam+15 Z2m415 Z2m ) Sp(Wam 1, Wam1, Wam ),
So(Z2mt2; Zom 425 Zam+1)s So(Wamt2, Wam 2, Wam 1),
= max

Sb(22m+17 Z2m+1y sz), Sb(w2m+1~, Wom+1, w?m)7

ﬁ[sb(ZQmﬁ—?v 22m+2, 22771+1) + Sb(22m+17 22m+1, Z2m)}a

1
352 [Sb (Wam 2, Wam 2, Wam 1) 4 Sp(Wam 1, Wam 1, Wam )]
= max{ Sp(Z2m 12, 22m 125 Z2m1)s Sp(Wam12, Wam 2, Wam1) } :

Thus

Sh (Z2m+27 22m+2, 22m+1) )

Y (Sp (22m12, Zamt2, Zom41)) < %Uf max
Sb (w21n+27 Wom+2, w2m+1)

® Sp (Z2m+27 22m+2, sz+1) )

— max

Sb (me+2, Wom+2, w2m+1)
Similarly, we can prove
(0 (Sb (w2m+2> Wom+25 w2m+1))
1 .
< mY (max{ St (Zam+25 Zomt2s Z2m+1) > Sb (Wamt2, Wama, Wama1) })

—¢ (max { St (Z2m+25 Zomt2s Z2m+1) > Sb (Wamt2, Wama2, Wame1) })

It follows that
¥ (max{ Si (Z2m425 Zam+2> Zom+1) » b (Wamt2, Wam+2, Wam1) })

1
< st (max{ St (Z2m+2, Zom+2, Z2m+1) > Sb (Wam+2, Wama2, Wamt1) })

_¢ (maX { Sb (ZZ’"L+27 Z2m+2; 22m+1) 3 Sb (w2m+27 Wom+2, w2nl,+1) }) .

It follows that 2zo,,49 = 2om1 and Way, 49 = Wop1.

Continuing in this process we can conclude that 2o, = 2o, and wo,1x = Wy,
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for all k> 0.
It follows that {z2,} and {ws,, } are Cauchy sequences.
Case (ii): Assume that zq, # 20,11 and wa, # w41 for all n.

Put Sn = max {Sb(zn+17 Zn+1, Zn)y Sb(wn+1: Wn41, wn)}

Since
Sp(C(ant2, Yont2), C(Tont2, Yonta), Pronia),
1 R Sp(D(T2n 415 Yant1), D(Tant1, Yont1), QP2ni1),
5 nin
S C(Yant2, Tans2), PYania),

b(C(y2n+27 $2n+2)
Sb(D(Zl2n+1 ) 12n+1) (7/2n+]7 $2n+1)7 Q?l2n+1)
< max{ Sp(Pronta, Pronga, Qont1), Se(PYont2, Plany2, QYont1) } .

From (5.2.3.4), we have

1/1 (Sb(2’2n+2, 22n+2,22n+1)) < 5% 1/1 (]M (x2m+27y2m+27x2m+17y2m+1))

-9 (ZW ($2m+27 Yom+25 T2m+1, y2m+1)) .

Here
]\/[ (I2m+27 y2m+27 x2m+17 yZ'm.+1)
Sp(22n+1, Z2n+1, 220 )5 Sp(Wan+1, Want1, Wan),

Sb(22n+2, 22042, 22n+1)~, Sb(w2n+27 Won+2, w2n+1)7

=max § Sy(2ont1, Z2nt1, Z2n), Sb(Wans 1, Wang1, Wan),
ﬁ[sb(zznw, Zony2; Zan) + Sp(22n11, Zans 15 Zont1)],
%[Sb(erH»Q Wan+2, u‘2n) + Sb(w2n+1a Wan+1, w2n+l)]
Sp(22n415 Z2n+1, 22n), Sp(Z2n+2, Z2n42, Z2n41),

= max

S’)(w27b+17 Won+1, 71]2"), Sb(w2n+27 Won+2, w2n+1)
= max{ Son+1, Son } :
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Therfore

P (51;(22%27 290425 Zzn+1))
<

557 (max{ Sont1, Son }) —¢ (max{ Sont1, San }) .

Similarly, we can prove that

11[] (Sb(w2n+27 Wan+2, w2n+1))
<

% 1/) (max{ SZ7L+17 SQn }) - ¢ (max{ S?n+1752n }) :
57 ¥ (max{ Sony1, Son }) -0 (max{ Sont1, Son }) :

If 95,41 is maximum then we get contradiction so that Sy, is maximum.

ot

Thus

¥ (San41) <

Thus

1

w (S2n,+1) S W lb (SZH) S ¢ (SZn) (1)

< Y (S2):
Similarly we can conclude that v (Sa,) < ¢ (S2p-1).
Since v is non - decreasing and continuous, it is clear that {S,} is a non-
increasing sequence of non-negative real numbers and must converges to a real
number say k > 0.
Suppose k > 0.
Letting n — oo, in (1), we have ¢ (k) < o= ¢(k) — (k) < ¢ (k).

It is contradiction. Hence k =0

Thus
lim Sp(Znt15 2415 20) = 0 (2)
and
r}LH;o Sp(Wpt1, W1, wy) = 0. (3)
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Now we prove that {z,} and {ws,} are Cauchy sequences in (X, 5).
On contrary we suppose that {z2,} or {ws,} is not Cauchy. Then there exist
€ > 0 and monotonically increasing sequence of natural numbers {2m;} and

{2nx} such that nj > my.
max{sb(Zkaa Z2mk7 ZQT%)? Sb (w2mk 5 w?mkv 1U2nk)} 2 € (4)

and

maX{Sb(Zka7 Z2my s 227%,2)7 Sb(w2mk7 Wy, wan,g)} <e€ (5)

From (4) and (5), we have

e < My =max{Sy(z2m,» 22my» 220y, ) So(Wapips Wy, , Wan, ) }
< 2b maX{Sb(Zka, Zomy s Zamyt2) s S(Wamy , Wamy, w2mk+2)}
+? max{ Sy(22my+2: Z2mp+202215 ) s Sb(Wamy+2, Wamy+2, Wan, ) }
< A6 max{Sy(2amy , Z2mys Zompt1) s Sb(Wamy s Warny s Wamy11) }

+2b" max{ Sy (2o, 41, Z2my 41, Z2my+2)> Sb(Wamy 41, Wamy 41, Wam,+2) }
+26° max{Sb(szkH, 22mp+25 Z2np+1 ) ) Sb(mekJer Wamy+2, Wany+1 )}

+b° max{Sy(22n,» Z2ny> Z2n,+1)> Sb(Wany, , Wan, s Wan,4+1) }-
Letting £ — oo and apply ¥ on both sides, we have that

€ . 817(22 25 Z2my 425 22 +1)

w(—,>§ lim ¢ | max e e . (6)
203 k—o0

sb(w21n,k+27 Wamy,+2, w2nk+1)



Now first we claim that

Sb(C(I27nk+2; y2mk+2)7 C(Ika+27 y2mk+2)7 P$2mk+2)7

1 . Sb(D(meﬁrlv y2nk+1)1 D($2nk+1~, y2nk+1)-, QxanJrl):
55 nin
Sb(c(y2mk+27 x2mk+2)7 C(y2mk+2a $2mk+2)7 PZ/ka+2)7

Sp(D(Yany+1, Tang+1) > D(Wong+1, Tong+1), QUong+1)

< max Sb(P$2mk+27Pl’zmk+2,Q$2nk+1)7 ' (7)
Sb(Py2mk+27 Pyo,+2, Qy2nk+1)

On contrary suppose that

Sb(c(x2m;,~+2~, mek+2)7 C(-r27nk+2a y2mk+2)7 PIka+2)«,

1 . Sb(D($2nk+17y2nk+1)7D($2nk+17y2nk+1)7Qxan+1)7
55 nin
Sb(C(yka% x?mk+2)7 C(mek+27 332mk+2)7 Py2mk+2)7

Sb(D(yQTlrk‘Fl 3 'TanJrl)a D(yan+l ) 1’2nk+1)7 Q?/Zn;ﬁ»])

> InaX{ Sb(Pmek+27 PIgkarz, ngﬂk_+1)., Sl)(PyQTka+2> Py?mk+27 Qy27lk+1) } :

Now from (4), we have

€ < max{Sy(2om,» Z2my s 220y ) s S (Worny s Wy, Wan, ) }
<2b max{Sb(Zka, Zomy, sz,c+1)7 Sb(wQﬂ’Lk7 Wamy, wzmk+1)}
+0b° max{Sb(szkH, Zomp+1> Zong )s Sb(Wamy 41, Wamy 41, w2nk)}
< 20 max{Sy(2amy > Z2my,» Zamy+1)s So(Wamy,, Wamy » Wamy 1) }

Sb(Zka+2«, Z22my+2> 2‘2mk+1)7 Sb(w27nk+2a Wom 42, w2mk+1)7

+b28,% min

Sb(ank+1; Zonp41, Zan)7 Sb(’an,chh W2n+1, wan)
Letting & — oo, we have € < 0. It is a contradiction.
Hence the claim is holds that is (7) holds.

Now from (5.2.3.4), we have
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P (Sb(ZkaJr% 22my,+25 ZkaH))

Sb(227nk+l7 ZQTnk+17 Zan)y Sb(w27nk+l7 w2mk+17 w?nk)s
Sb(Zka+2; 22my,+25 22mk+1), Sb(w2mk+27 Wom,+25 w2mk+1),
1 P
S g ¥l max 4 Sy(2on,11, Z2ng415 220y )5 Sb(Wong 1, Wang 1, Wany, ),

ﬁ[sb(zmn”z, Z2mp+25 Zan) + Sb(ZanJrlv Z2n+15 szﬂﬂy

1
152 190 (W 12, Way 12, Wany, ) + Sp(Wany 41, Wany 415 Wamy 41)]

Sb(Zka-#h Z2my+15 Zan)7 Sb(w2mk+17 Wormny,+1, w2nk)7
Sb(z2m;€+2~, Z2my 42> ZkaJrl)v Sb(/w2mk+21 Wom 42, ’w2m,c+1)7
—¢ | max ¢ Sy (2on, 415 Z2ng+15 220 )> So(Wangt1: Wany 1, Wany, )5

ﬁ[sb(zzmﬁz, 22my+2> z?nk) + Sb(Zzn,kH, 2205415 ZkaH)]v

102 [Sb(Wam, 12, Wom G2, Wan,, ) + Sp(Wany, 11, Wany 11, Wy +1)]
Similarly

P (Sb(mekJr% W2m,;,+2, w2mk+1))
Sb(22mk+1= Z2my+1, ZZ”;«,)v Sb(w2mk+17 Womy+1, w27lk)’
Sp(2ompt2s Z2my+25 Z2my 1) Sb(Wamy 12, Wamy+2, Wamy 41),
< % Yl max 9 Sy(2on, 415 22np15 220k ) s Sp(Wang 1, Wang 15 Wany )s

ﬁ[sb(zmﬁm Zampt2s Z2ng ) + Sb(Z2ng+1s Zan+1, Z2met1)],

1
W[Sb(w%nk#»% Wom 42, w2nk) + Sb(w2nk+l7 Wy +1, w2mk+1)]

Sb(ZQm,chh Z2my+1, ZZn,c); Sb(w2mk+1~, Womy,+1, u’2nk)7
Sb(22mk+27 22mp+25 szk+1)7 Sb(mek+27 W42, mek+1)7
—¢ | max Sb(Z2nt15 Z2np+15 22k ) s So(Wang41, Wany 11, Wany, ),

1
W[SI)(ZZTILk+27 2o9mp+25 ZQH,k) + Sb(2271.k+17 2onp415 ZZm,k.#»l)L

;?[Sb(u&mk-%—% W42, Wany, ) + St (Wany 11, Wony 41, Wam,+1)]

107




Thus

w (max { Sb(z2771k+27 22my+25 Z2mk+1)7 Sb(mekJr% Womy+2, ’LUka+1) })

71/}

But

max

max

Sb(ZkaJrh Z2my,+1, zan)7 Sb(’w2mk+17 Womy+1, w2nk)~,
Sb(z2777«k+27 22my+25 Zka+1)7 Sb(w2mk+2= Womy+2 w2mk+l)7
Sb(ZanJrh 2onp+1, Z2nk)7 Sb(wanJrh Wony+15 w2nk)7

1 Sb(Z2mp+25 Z2mp+2, Z2ny,)

+Sb(Z2ng+15 Z2np 415 Z2mp+1)

Sb(mekJer Wam+2, w2nk)

}P‘
&=
ol

+Sp(Wang41, Wang+1, Wormy+1)

Sb(Zka,+1~, Z2my+15 Zan)7 Sb(w2m+17 Wamny,+1, w2nk);
Sb(Zka+27 Z2mp+25 Z2mk+1)7 Sb(mek+27 Wamy+2, w2mk+1)7
Sb(z2nk+1 5 2onp+15 Zan)y Sb(w2nk+l s Wang+1; “)‘an)v

1 Sb(Zka+27 Z2my 42 Zan)

+Sb(Zong+1: Z2ip 415 Z2mp+1)

1 Sb(w2mk+27 Wom,+2, w?nk)

+S(Wary 41, W41, Wamy+1)
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max{Sy(22my+1, 22my+1 220y )s Sb(Wamy+1, W1, Wan,, ) }

< 20 max{Sy(22my+1: 22mp+15 22my ) s Sb(Warmny+1: Warmy+1, W, ) }
+0° max{ Sy (2am, , Zomy.» Z2ny ) So(Wamy , Wy, Wan, )}
< 20 max{Sy(Zomy+1, Z2mp+1, 22my.) s 6 (W15 Wony+1, Wam, )
+b? (21) max{ Sy(22my,» 22mys 22n5_s)s b (W2 s Wy, » w2nk72)})
+b% (0* max{Sy(22n, —2, 22n,—2, 220, )» St (Wany 2, Wan, —2, Wan, ) })
< 2b? max{Sy(2amy. s 22my» 22mpt1)s Ob(Wormy s Wy Wamy+1)
+2b%¢ + 2b° max{Sy(22n,—1, Z2n,— 15 Z2n; )s Ob(Wan,—1, Wopy—1, Wan, ) }
+b° max{Sy(Z2n,—1, 220, —15 220y, )y Sbp(Wany—1, Wapy —1, Wan, ) }-
Letting £ — oo, we have
kllrsgo max{Sy(Zam, 11, 22my+ 15 Z2ny,)s Sb(Wamy 115 Wamy 41, Wan, )} < 2b%€.

Also

: 1
khm W[S}1(Z277Lk+27 22my,+25 ZZTLk.) =+ Sb(2271,k+17 Zonp+1s 227n,k+1)]
—00

p)

. 205y (Zomy+2,Z2mp+2, Z2mp+1) + 07 So(Zomp 41, Z2mp41, Zon, )+
< lim e
k—oo

2
205y (241, Z2ng+15 Zony,) + 07 Su(Zong s Zons > Z2mp+1)

IN

S 13 2
lim m[b Sb(Zomp 115 Z2mp+15 Z2n,) + 0°Sp(Zomy 415 Z2mp+1, 220, )]

k—oo

o [20% + 2b°¢]

(14b)2b%€
102

IN

IN

ble.

Similarly

1

: 4

khm 4h2 [Sb(ZZm;c-f—% Zomp+25 Zan.) + Sb(w2nk+17 Wony+15 me;ﬁ—l)} S b e.
—00
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Letting k£ — oo in (8), we have

khjgo 1 (max{ Sb(Z2mpt25 Z2mpt2s Z2mpt1) s Sb(Wamy+2, Wamy 42, Wamy+1) })
< =1 (max{2b%,0,0,0,0, b, bie})

Sb(Z2mk+17 Z22my+15 22nk)7 Sb(w2mk+17 W2m,+15 w2nk)>
Sb(227nk+27 Z22my 42> 22mk+1)7 Sb(w2mk+2> Wom 42, w2mk+l)7
- khjgo ¢ | max § Sy (2ont1, Z2nt1s 228 )s So(Wangt1s Wangr1, Wang )

1
@Sb(Zka+27 Z2mp+25 Zan) + Sb(Zan+17 Z2np+15 Zka+1):

1
5596 (Wanmy 425 Wamg 12, Wany ) 4 Sy (Wany 11, Wany 11, Wamy,+1)

< 5171/; (max{2b%, bte}) .

Therefore
Sp(Z2my 425 Z2my 425 Z2m 1),
klim ¥ | max (ames o o < 271 (max{2b%, b'e}) (9)

Sb('mek+27 Wom 42, ’w2m,c+1)
Now letting n — oo in (6), from (2),(3) and (9), we have

1
P (2—;> < ﬁ*ﬁ (max{2b%, b'e}) .

Subcase(i) : If 2b3%¢ is maximum, by the definition of 1, we have that

v <

(SIS

It is a contradiction.

Subcase(ii) : If b*e is maximum, by the definition of 4, we have that

b<

(SN ]

It is a contradiction.

Hence {z2,} and {ws,} are S,-Cauchy sequences in (X, .5).
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In addition

maX{Sb(Z2n+1, 29041, sz+1)7 Sb(w2n+h Wan+1, w2m+1)}

< 20 max{Sy(22n+1, Zant1, Z2n)> Sp(Want1, Wony1, Wan) }
+b% max{Sy(29n, 2on; Zams1)s Sp(Wap, W, Wams1) }
< 26 max{Sy(2an, Zan, Z2n+1), So(Wan, Wap, Waps1)}
+2b* max{Sy(22n, Z2n, 22m ), Sb(Wan, Wan, Wam) }
+b* max{Sy(z2m, 22m Z2m+1), Sb(Wam, Wan, Wams1) }-
It is clear that

Sp(Z2n+1, Z2n+1, Z2m+1) < € as N, M — 00

and

Sp(Wan+1: Want1, Wapt1) <€ aS 1, — 00.

Therefore {z9,+1} and {wa,11} are also S,-Cauchy sequences in (X, S).
Hence {z,} and {w,} are S,-Cauchy sequences in (X, S).

Suppose P(X) is Sp- complete subspace of (X, S). Then the sequences {z9,+1}
and {way,41} are converges to a and § in P(X). Thus there exist @ and b in

P(X) such that

lim 2, =« = Pa and lim w, = 3 = Pb. (10)

n—oo

Before going to proving common coupled fixed point for the mappings C, D, P
and @, first we claim that for each n > 1 at least one of the following assertion

is holds.

1 . Sb(22w,+17 22n+1, Z?n)a
7 min

S max{ S},(OK,OZ,ZQH),S},(KL /87 w2n) }

Sh(w2n+1, Wan+1, w2n)

or
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1 . Sb(sz Z2n, 22n71)7
g3 1N Smaxy Sy(a,, zan-2), Sp(0, B, wan—2) |-
Sy (W, Wan, Wan—1)
On contrary suppose that
Sb(22n+1; Z2n+1, Z2n)7

%min > maX{ Sb(a7a7z2n)7sb(/87 ﬁv (LUQn) }

Sp(Want1, Wan g1, Wan)
and
Sb(22n~, Z2ny Z2n—1 )a

Sl%min > ma‘X{ Sb(Oé,O(722n_1),Sb(ﬁ,,ﬁ,wzn_l) } :

Sb(w2n7 W, w2n71)

Now consider

Sb (Zan Zony Z2n—1 ) ]

min
Sb(w2n; Wan, wZn—l)
. QbSb(ZZTm Zon, O‘) + bQS[,(CY, «a, ZZnAI)*,
< min
QbSb(wZTu Wap,, ﬁ) + szb(ﬁ7 ﬁ» Z?n—l)
Spla, a, z Sp(a, @, z91),
S 2b2 max b( s Gy 2n)7 +b2 max b( s “2n 1),
Sp(8, B, wan) Sp(8, B, 22n-1)
I Sb(22n+1 y 220415 Z?n)7 I Sb(ZZm Zon, Z2n71)7
< E min + 5 min
Sb (w2n+17 W2n+1, wZn) Sb(w2n7 Wan, w2n—1)
1 . Sb(Zva Zon; Z?n—l)7 1 . SIJ(ZQWM Z2n, ZZ'!L—1)7
< 7; min + g min
Sb(w2n7 Wanp, w?n—l) Sb(w2n> Wap, w2n—1)

= 8i min { Sb(ZQna Zon, ZZW,71)7SIJ(702717 Wan, w2n—l) } :
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It is a contradiction.

Hence our assertion is holds.

Sp(Zon+15 Zant1, 22 )7
Sub case(a): gz min (eams1, Zom1, 2

S max { S};(Q, , Z?n)a Sb(ﬁ7 ﬁ‘, w2n) }

Sb(w2n+1, Wan41, w2n)
is holds.
Now we have to prove that C(a,b) = o and C(b,a) = (3.
On contrary suppose that C'(a,b) # a or C(b,a) # 5.

Since
S{,(C(a, b)7 C(CL, b)7 a)7 Sb(ZZnJrh 22n+415 Z?n)7

S[)(C(b7 a)7 C(b’ a)s ﬁ), Sb(wQ'rH»la Won+1, wZn)
< max {Sy(e, v, 220), Sb(5, B, wan) }

1 .
W min

From (5.2.3.4), by deinition of ¢ and Lemma 1.9.9(Ch-1), we have

¥ (5 (Cla.b). Cla.b). o))

< Jim inf (5, (C(agh)! (@ b), D(raren vovsn)
Si(a, o, 22n), Sp(3, B, wan),
Sy (C(a,b),C(a,b),q),
5(C(b.0).C.a). 3)

IN

o

11,7 JLHOIO inf ¢ | max ) Sy (C(a,b),Cla,b), Qrapir) +

2b J
St (Z2n415 Zon+1, 04)

Sb (C(b, a), C(b, a), Zzn) -+

Sp (7U2n+17 Wan+1, /3)
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Sb(a’a722n)7sb(5v ﬁ7 wZn)7
Sh (C( ) (a= b)7(¥)7
Sy (C(b,a),C(b,a), B),

— lim inf¢ | max{ | S, (Cla,b),C(a,b), Quanar) +
2b
Sb (Z2n+17 Z2n+1, ()[)
Sb (C(b, a)7 C(b, a)7 Zzn) +
2

Sp (w2n+17 Wan+1, ﬁ)
= %"/} (max {Sb (C(a7 b)v C(a7 b)v Oz) ;S (C(b’ a), C(b’ a)’ ﬁ)})
Similarly
¥ (5525 (C (b, a), C(b,a), B))
< g (max { Sy (C(b,a),C(b,a),a) S, (C(b,a),C(b,a), ) })

S

Thus

Sp(Cla,b),C(a,b), a), Sp(Cla,b),Cla,b), a),

2 1 .
| gz max <: b ¥ | max

Sp(C(b,a), C(b,a), B) Sp(C(b,a),C(b,a), B)

By the definition of ¥, it follows that C'(a,b) = a = Pa and C'(b,a) = § = Pb.
Since (C, P) is w-compatible pair, we have C'(«a, §) = Pa and C(f3,a) = Pf.

From the definition of Sy-metric it is clear that

Sb(C(av ﬁ)v C(O{, /8)7 POL), Sb(O(/Bv O{)7 0(57 O[), Pﬁ)
sb% min So(D(Zan+1, Yont1)s D(@2nt1, Yant1), QTont1),

Sb(D(y2n+17 T2n+1)7 D(92n+1, I2n+1)7 Qyzn+1)

< max{ Sp(Pa, Pa, Qxony1), Sy(PB, PR, Qyons1) }
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From (5.2.3.4), by the definition of ¢ and Lemma 1.9.9(Ch-1), we have

¢ (5(Cla 8), Ca, B), a)
= JEEC sup ) (S,(C(a, B), Clev, B), D(@an+1, Y2n+1)))
Sy(C(a, B), C(a, B), 22n), Sp(C(B, ), C(B, @), wa,),
nlglolo Sup | max Sp(22n41; 22041, 220) s Sb(Wan41, Wani1, Wan),

Sp(z2n+1, 22n+1, C(, £)), Sp(wapny1, woni1, C (B, @),

1
S 567

Sy(Cla, B), Cla, B), 22n), Sp(C(8, @), C (B, a), wan),

— lim sup ¢ | max Si(Zani1s Zans1, Zon), Sp(Wan g1, Wan 1, Wap ),

Sb(227z+17 22041, 0(017 5))7 Sb(’w2n+1, Won+41, C(ﬁ a))’

< o [ max 205,(C(a, B), Claz B), ), 2bS,(C(B, ), C(B, @), B),
7 0,0, 02 Sy(a; v, C(av, B)), b2S,(B, B, C (3, ),
<gr <2b2 m‘cLX{ Sp(Cler, B), Cla, B), ), Sp(C(8, ), C(8, ), 3) }) .

Similarly

Sp(Cla, 0),Cl(a, B), a),
¥ (5S(C(8,0),C(B,a), B)) < < v | 2% max WCle. B), Cla B o). (1)
Sb(c(ﬁva)vc(ﬂva)vﬂ)

Thus
o | 4 max ] @D Cl@f).a),
1 Sy(C(B,a),C(B,a), )

T e LU O
Sp(C(B, ), C(B, ), B)

By the definition of v, it follows that

C(a,f) = a = Paand C(f,a) = = PS.
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Therefore (o, ) is common coupled fixed point of C' and P.
Since C(X x X) C Q(X) there exist  and y in X such that
C(a,B) =a=Qz and C(f,a) = = Qy.

Since we have that

Sb(D($7 y)v D(.’l?, y)7 Ql)v Sb(D Y, :I;)v D(yv .’l?), Qy)
Sp(Pa, P, Q),
Sy(PB, PB,Qy)

1 ,{Suﬂaﬁ%Cwﬁ%PMJMQ@axﬂ&axﬂﬂ}
m min

< max

From (5.2.3.4), we have

Sp(a, a, D(x, 1)), Sp(D(z,y), D(x,y), a),

B P G A el LT C R A
Su(B, B8, D(y, v)) Sy(D(y, z), D(y, z), B)

Similarly

1/1(511(5~B~D(y7$)))

Sslﬁ(b bmax Sb(@,Oé,D($7y)), — ¢ | max SdD((L’,y),D(.T,y),Oc), .
Sy(3. 8, D(y, z)) Sy(D(y, x), D(y, x), B)

Thus

1/] i Sb(a7a7D(Ivy))a

Sb(ﬁvﬁ~,D(y7I))

Sy(a, o, D(x,9)), Sp(D(z,y), D(x,y), a),

< 6 [ bmax (@, a, D(z,y)) | max (D(z,y), D(z,y), ) .
Sb(ﬁvﬁvD(%I)) Sb(D(y7x)’D(y’$)7ﬁ)

It follows that D(x,y) = o = Qz and D(y,z) = 5 = Qy.
Since (D, Q) is w-compatible pair, we have D(«, §) = Qav and D(3, o, ) = Qp.
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Since we have that

L] sic,8).0(0,0), Pa).SiC5,0).C(5.0). PO)
v S,(D(a. ), D(w, B). Qa), Sy(D(B, ), D(5, ), QF)

Sb(Pav PCM,QCY),
< max .
Sb(Pﬁ7 Pﬁ»Qﬁ)
From (5.2.3.4) we have

¥ (S(Cla, B),Cle, B), D(e, B)))
o [ Sp(a, o, D(e, ), Su(B, 8, D(B, av)),
v D(e.3). ). Sy(D(8.0). D(3.a). §)
- Sp(av, &, Dt 8)), Sy(8, 8, D(58, @),
Sb(D « ﬁ (a ﬂ)va)vsb(D(/B7a)7D(ﬁ’a)’ﬂ)
< g ¥ (bmax{ Sy(a;a, D(ev, ), Ss(B, 3, D(B, ) }) :
Similarly
¥ (Sy(83,8,D(83,)))
< % d} (bma‘x{ Sb((l,(%D((Jz, ﬁ))vsb(ﬂ7ﬂvD(67 O/)) }) :
Thus
o [ max Sp(av, a, D(av, B)), - % o | bmas Sy, a, D(e, B)), .
Sy(8, 8, D(B, ) Sy(8, 8, D(B, )
It follows that D(«, 3) = a = Qo and D(53,a) = 5 = Qp.

Therefore (a, ) is common coupled fixed point of C, D, P and Q.

To prove uniqueness let us take (o, 4!) is another common coupled fixed point
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of C, D, P and Q.
Since it is clear that

imin Sb(c(azﬁ)vc(aaﬂ)vPa)>Sb(C(ﬁ7 a)7c(ﬂ7 a)~,Pﬁ)7
¥ Sy(D(at, 3Y), D(al, 8Y), Qat), Sy(D(B, at), D(B', a), QA"

Sy(Pa, P, Qat),
< max .
Sy(PB, P3,Q8")

From (5.2.3.4), we have

¥ (Sh(a, @, ah))
=9 (Sy(C(a, B), C(a, B), D(a', 8)))
Sy(ev, ), Sy(8, 8, 8"),.Sp(er, v, @),
< g7 ¥ | max Sy(8: 58, 8), Sp(a', atyal), Sy(5, B, 5,
w7 [Sh(as e, at) + Sp(at, ot ), 3 [S(8, 8, 8) + Sy(6", 5", B)]

Sp(a, azat), Sy(B, B8, 8Y), Sp(a, a, @),
7¢ max Sb(ﬁwgvﬁ)vSb(a17a17a1)7Sb(ﬁlvﬁlvﬂl)v
1z [Se(a, a, ) + Sp(at, ot )], g2 [S6(8, B, 8Y) + Se(68", 81, B)]

< g7 P(bmax{Sy(a, @, at), Sy(3, 8, 1)}).
Similarly
,l/) (Sb(ﬁ7 }97 ﬁl)) < % w(bnl&X{Sb(av a, 0[1)7 Sb(ﬁv Bu 61)})

Thus

" (mx{ Sulas s ), Su(8. B, 3 }) < 2 wbmax{Sila,a,at), (8,8, 8}).
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It follows that a = a' and 8 = 3'.
Hence (o, () is unique common coupled fixed point of C, D, P and Q.

Similarly the remaining proof also follows when the Sub case(b) holds.

. 1 . Sb(sz Zon, Zzn—l)a
v.e. Wmm S max Sb(a7a722n71)7sb(ﬁ7ﬁ7w2n—1)
Sb(wZ'rn Wap, wZn—l)
is holds.
Now we give an example to illustrate our main theorem.

Example 5.2.4. Let X =[0,1] and S: X x X x X — R* by

Sy(x,y,2) = (Jy + 2 — 22| + |y — 2])?, then S is S, metric space with b = 4.

Define C,D: X x X — X and P,Q : X — X by C(z,y) = £

=
D= ;%,P(m) = ¢ and Q(z) = . Also define 1, ¢ : RY — R by ¢(t) =t
and ¢(t) = 5=

1/1 (Sb(c($7 y)7 C(L y)7 D(u, U)))
= (IC(z,y) + D(wyw) — 2C(z,y)| + |C(z,y) — D(u,v)|)?
= (

2 |C('T?y) = D(“v U)')z

2
Tty u+v

=4 3~ B3

2 |dz—u dy—v 2
=3 I'® T°F |

2
1 422 —u? 4y —v?
< b (o {25525
1 z _ w|? qy le
< Gamy maxq |7 16} 7117 16

6(411“) max Sb(P$7 Pz, Qu)vsb(Pyv Pyv QU),S},(C(.%', y),C’(ry)Px) }

IN

% 1/) (Z\/[ (.’E, Y, u, U)) - @ (]\J ($7 Y, u, U))
Thus the condition (5.2.3.4) is satisfied.One can easily verify remaining con-
ditions of Theorem 5.2.3 and (0,0) is unique common coupled fixed point of

C,D, P and Q.
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Theorem 5.2.5. Let (X,S) be a complete S,-metric space. Suppose that

A: X x X — X be mapping satisfying

S(A(z,y), Az, y), v),

#min < max{ S(z,z,u),S(y,y,v) }
S(A(u,v), A(u,v), u),

implies that

U (A1), A ), Al ) S 220 (M (2,,10,0)) = 6 (O (,,0,0)

for all z,y,u,v in X, where 1, ¢ : R*Y — R* are such that 1 is linear and

monotonically increasing function and ¢ is lower semi continuous,

P(0) = ¢(0) = 0 and ¢(t) > 0, for all ¢ > 0 and

S(z,x,u), S(y,y,v), S(A(z,y), Az, y), ©),
S(A(y, ), Ay, x),y), S(A(u,v), A(u, v),u),
M (z,y,u,v) = max S(A(vyu), A(v,u),v),

ﬁ [S(A(z,y), Az, y),u) + S(A(u,v), A(u,v), x)],

7 [S(A@@), Ay, 2),v) + S(A(v,u), A(v, u), )]

Then A has a unique coupled fixed point in X x X.
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CHAPTER 6

A NEW COMMON COUPLED FIXED POINT RESULT FOR
CONTRACTIVE MAPS INVOLVING DOMINATING
FUNCTIONS

In this chapter we establish a new common coupled fixed point theorem
for contractive inequalities using an auxiliary function which dominate the
ordinary metric function.

Now we extend the Salimi et al.[77] Definition 1.11.3(Ch-1) to Jungck type
maps of which one is a coupled map as follows.

Definition 6.1. Let (X, d) be a metric space and F : X x X — X and
g : X — X be mappings. Let a : X x X — RT. The pair (F,g) is said to
be a-admissible with respect to d if x;y € X, a(gz, gy) > d(gz, gy) implies
a(F(z,x), Fly,y)) = d(F(z,2) E(y, y))-

Definition 6.2. Let X be a non-empty set, F': X x X — X and

g : X — X be mappings.

(z) ([107]) An element (z,y) € X x X is called a coupled coincidence point

of Fand ¢ if gr = F(x,y) and gy = F(y, x).

(22) ([107]) An element (z,y) € X x X is called a common coupled fixed

point of F and ¢ if gx = = F(x,y) and gy = y = F(y, z).

(7i) ([56]) The pair (F,g) is w-compatible if g(F(z,y)) = F(gx, gy) and
g(F(y,x)) = F(gy, gx) whenever there exist x,y € X with gz = F(z,y)

and gy = F(y,x).
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(iv) The pair (F,g) is commuting if g(F(z,y)) = F(gz, gy) and g(F(y,x)) =

F(gy, gz).

Definition 6.3. Let ® be the family of non-decreasing and continuous
functions ¢ : RT — R such that i ¢"(t) < oo for each t > 0. Clearly
o(t) < tfort>0and ¢(0) =0. -

In 2016 N.Hussain et al.[69] proved the following theorem.

Theorem 6.4.(N.Hussain et al.[69]): Let a : X x X — R* be a mapping
and (X, d) be a complete metric sapce. Let T be a self-mapping on X and the

following assertions hold.
(i) T is a-admissible mapping with respaect to d,
(1) either T is continuous or,

(27) if {x,} is a sequence in X such that o(x;, Tz) > d(z,Tx)

for all n € NJ{0} and lim a(z,,Tz) > d(z,Tx),
(tv) there exists xyp € X such that a(zg, Txg) > d(xo, Txo),

(v) there exists ¢ € ¥ such that for all z,y € X,

Then T has a fixed point.
We observed that the authors inherently used the continuity of ¢ when using
(777) and (v).

In this chapter we generalize the N.Hussain et al.[69] Theorem 6.4 and
obtain a new common couled fixed point theroem.

Now we give our main Theorem.
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Theorem 6.5. Let (X,d) be a metric space, FF : X x X — X and
g: X — X be mapping. Let a : X x X — RT be a mapping with

a(z,y) =0< z =y. Assume
(6.5.1) F(X x X) C g(X), g(X) is a complete sub space of X,
(6.5.2) the pair (F, g) is commuting,
(6.5.3) the pair (F,g) is a-admissible with respect to d,
(6.5.4) a(gzo, F(xo, o)) > d(gzo, F(xo,x0)) for some xz € X.
(6.5.5)

algr,gu), a(gy, gv), a(ge, F(z,y)),

algy, F(y, x)), a(F(z,y), gu), a(F(y, x), gv)

a(F(z,y), Fu,v) < ¢ [ max

forall z,y € X, ¢ € .

(6.5.6) (a) Assume F and g are continuous on X.

(or)

(6.5.6) (b) If {y,} is a sequence in X such that a(yn, Ynt1) > d(Yn, Ynt1) for n €
NU{0} and vy, — gy as n — oo for some y € X then lim a(y,, gy) =0

and lim a(yn, F(y,y)) = d(gy, F(y,y)).

Then F and g have a unique common coupled fixed point.

Proof: From (6.5.4), ther exists zy € X such that
a(gxo, Fxo, x0)) > d(gxo, F(xo, 20))- (1)
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From (6.5.1), there exists a sequence {z,} in X such that

9Tn1 = F(xn,2,),n=0,1,2,3, ...

From (1) a(gxo, gz1) > d(gzo, g1).

From (6.5.3), a(F (zo, o), F(x1,21)) > d(F(x0,20), F(21,71))

= a(gr1, gra) > d(gr1, gs).

Again from (6.5.3), a(F(x1,21), F(x9, x2)) > d(F(x1,21), F(xg, 22))
= a(gxg, gr3) > d(gxs, gxs).

Continuing in this way, we have

a(gxnvgxn+l) 2 d(gxnvgx’n+l) fOT n = 07 17 27 37 (2)

Case(i): Suppose g, = g,41 for some n.

Then gx, = F (2, z,) = gz = F(z,2) where z = 2.
Since the pair (F), ¢) is commuting, we have

9%z = 992 = g(F(2,2)) = F(gz, 92).

From (6.5.5), we have

a(gz, 922) = OL(F(Z7 Z)7 F(gz’ gZ)
algz, ¢*2), a9z, 6%2), algz, F(z, 2)),a(gz, F(z, 2)),
a(F(z,2),9%2),a(F(z,2), g%2)

= ¢(algz,9°2))

< ¢ | max

which in turn yields that a(gz, g>z) = 0 since ¢(t) < ¢ for ¢t > 0.
Thus gz = ¢*z. Therfore gz = g%z = F(gz, g2).

Thus (gz, gz) is a common coupled fixed point of F" and g.

Suppose (p, p) is a another common coupled fixed point of F and g.

ie;p=gp=F(pp).

124



From (6.5.5), we have

a(gz,p) = a(F (g2, 92), F(p,p)
a(g®z,p), (g2, p), alg®z, F gz, 92)), (g2, F (g2, 92)),
< ¢ | max
a(F(gz,92), gp), a(F (92, 92), gp),
= ¢(algz,p))
which in turn yields that a(gz,p) = 0 so that gz = p.
Thus (g2, gz) is the unique common coupled fixed point of F' and g.
Case(ii):Assume that gz, # gxn41 for alln =0,1,2, ...

From (6.5.5), we have

a(gxnvgzn+l) = Q(F(.’L‘n,]71‘n,1)7 F(TnyTn))
a(g‘rn—hgxn)‘,a(gxn—hgxn):a(gxn—l7gwn)7
< ¢ | max
g1, 9n), (9T, GT0), (g0, G20),

= ¢(O‘(g$n—l’ gxn))

From(2),
d(gxnv ganrl) < O‘(gxmganrl)
< d(agn1, 92a))

continuing in this way and using the non-decreasing property of ¢, we have

d(gn, grni1) < ¢"(a(go, gz1)) 3)

—0 as n — o0
00
Since Y ¢"(t) < oo for t > 0, for each € > 0 there exists a positive integer N
n=1

such that > ¢™((a(gzo, gz1)) < €.
n>N

Let m and n be positive integers such that m > n > N. Then

m—1

d(gn, grm) < 1; d(gar, gTrr1) < ;v " ((a(gzo, gz1)) < e.
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Thus {gz,} is Cauchy. Since g(X) is complete, there exists z € X such that
9T, — gz as n — oo.

Suppose (6.5.6)(a) holds.

Then g%z = éﬂ& 99Tni1 = 7{@; 9(F(zp, 1)) = #I’olo F(92n, gry) = F(z,2).
Write ¢ = gz. Then gq = F(q, q).

Now as in Case(i), it follows that (gq, gq) is the unique common coupled fixed
point of F' and g.

Suppose (6.5.6)(b) holds.

Then from (6.5.6)(b), we have

lim a(gx,, gz) = 0. 4)
Also
d(gz, F(z,2)) < lim a(gz,, F(z,z))
= lim a(F(zp-1,Tn-1), F(2,2))

a(gan=1, 92), a(gxp_1, g2), (gTn_1, 9),

IN

lim ¢ | max
n—oo

a(g2n-1,90), a(g2n, 92), a(gn, g2)
=¢(0) from(4) and continuity of ¢

which in turn yields that d(gz, F(z,z)) = 0 so that
F(z,2) = g 5)

Now as in Case(i) it follows that (gz, ¢z) is the unique common coupled fixed
point of F' and g.

Corollary 6.6. Let (X,d) be a metric space, g : X — X and
F : X x X — X be mappings. Let a : R — RT be a mapping with
a(z,y) =0 =z =y. Assume (6.5.1),(6.5.2),(6.5.3),(6.5.4) and (6.4.6). Also

assume
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(6:6.1) a(F(z,y), F(u.v)) < ¢(maz{algz, gu), algy, gv)})

for all z,y,u,v € X and ¢ € ®.

Then F and g have a unique common coupled fixed point .
Corollary 6.7. Let (X, d) be a complete metric space and F': X x X — X

be a mapping. Let o : RT — RT be a mapping. Assume that

(6.7.1) a(F(z,y), F(u,v)) < ¢p(maz{a(x,u),aly,v)}) for all x,y,u,v € X and

¢ e ®7
(6.7.2) F is a-admissible mapping with respect to d,
(6.7.3) there exists zy € X such that a(xg, F(xg,2o) > d(xo, F (20, z0),

(6.7.4) if {x,} is a sequence in X such that a(x,, 2,11) > d(z,,x,41) for all

n = 1,2,3... and x, — x as n — oo, then lim a(z,,z) = 0 and

n—00

lim a(x,, F(z,2)) > d(x Fx, x)).

n—oo

or
F'is continuous on X x X.
Then F has a coupled fixed point.

In 2016 Hussain et al.[69] proved the following theorem.
Theorem 6.8(Hussain et al.[69]): Let a : X x X — R* be a mapping
(X,d) be a metric space and T : X — X be mapping and the following

assertions hold:
(6.8.1) T is triangular a-admissible mapping with respect to d(z, y),

(6.8.2) either T is continuous or,
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(6.8.3) if {z,} is asequence in X such that a(z,,xpt1) > d(z,, Tne1) for all

n € NU{0} and z, — x as n — oo, then lim a(x,,Tz) > d(z,Tx),

n—00

(6.8.4) there exists zg € X such that a(zg, Txg) > d(zg, Txo),

(6.8.5) assume that there exists a function § : RT — [0,1] such that for any
bounded sequence {t,} of posiytive reals ,5(t,) — 1 implies ¢,, — 0 and

forall =, y € X, a(Tx,Ty) < fla(z,y))d(z,y).

Then T has a fixed point.

Definition 6.9. Let (X,d) be a metric space, a : X x X — Rt be a
mapping and f, g, 5,7 : X — X. The pair (f, g) is a-admissible with respect to
the pair (S,7T) under d if for z,y € X, a(Sz,Ty) > d(Sxz;Ty) = a(fz, gy) >
d(fz,gy) and a(T'z, Sy) > d(Tz, Sy) = algz, fy) >d(gz, fy).

Definition 6.10. (f,g) is called triangular a-admissible w.r.to the pair

(S,T) if
(2) (f.g) is a-admissible w.r.to(S,7) and
(1) a(z,y) > 1land afy,2) > 1 = a(z,z) > 1 for all z,y,z € X.

Now we generalize the Hussain et al.[72] Theorem 6.7 for four maps as
follows.

Theorem 6.11. Let a: X x X — R* be a mapping with
a(z,y) = 0=z =y. Let (X,d) be a metric space and f,g,5,7 : X — X be

mappings satisfying
(6.11.1) F(X) € T(X), 4(X) C S(X),
(6.11.2) (f,S) and (g,7') are weakly compatible pairs,
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(6.11.3) a(fx,gy) < B(a(Sz,Ty))d(Sz, Ty), for all ,y € X, where § : RT —
[0, 1) such that for any bounded sequence {t,,} of positive reals, 5(t,) — 1

implies t,, — 0 as n — oo,

(6.11.4) there exists z; € X such that a(Sxy, fa1) > d(Szy, fr1) and

affxy, Szy) > d(fry, Szy),

(6.11.5) the pair (f,g) is triangular a-admissible with respect to the pair (S,T')

under d,

(6.11.6) suppose S(X) is a complete sub space of X and
lim a(fu,y,) > d(fu,Su), lim a(Sz,y,) > d(Sz, z) and
a(z,Tz) > d(z,Tz) whenever there exists a sequence {y,} in X such

that a(Yn, Ynt1) = d(Yn, Yny1) for n'=1,2,... and y,, — 2z = Su for some

zyu € X.

Then f,g,S and T have a common fixed point.

Proof: From (6.11.4), there exists z; € X such that

a(Szy, fry) > d(Sxy, fry) (1)

and afzy,Szy) > d(fzy,Sz1) (2).

From (6.11.1), there exist sequences {z,} and {y,} as follows:
Yont1 = [Tony1 = TTanyo,

Yont2 = gTopt2 = STapis, n=0,1,2,....

From(1),

a(Sxy, fay) > d(Sxy, fr1)

= «a(Swy,Tas) > d(Sx1, Txg) from definition of {y,}

= affrr, gr2) > d(fa1, gzo) from (6.11.5), i.e; ayr, y2) > d(vy1,y2)

= a(Txg, Sx3) > d(Txs, Sxs) from definition of {y,}
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= a(gxy, frs) > d(gxe, frs) from (6.11.5), i.e; a(ya, ys3) > d(ya, ys3)
Continuing in this way, we have

&(Yn, Ynt1) = d(Yn, Yns1) for n =1,2, ... (3)
Similarly using (2), we can show that

Ynt1,Yn) 2 d(Yns1,yn) forn=1,2, ... (4)
By (3),(4) and using triangular property, we have

&(Ym; Yn) = d(Ym, yn) for m <n (5)
and a(Yn, Ym) = d(Yn, ym) for m < n. (6)
Case(i): Suppose Yo, = Yami1 for some m.

Now from (3),

A(Y2m+1, Yom+2) < (Yoms1, Yom2)

a(fTomi1, 9Toms2)

IN

(
(
(a(Sxomi1, T2m12))d(STam i1, Tomy2)
(

B
[7) a(y2m+17 y2m+2))(0)
0

which in turn yields that yom+1 = Yomia.

Continuing in this way, we can show that yo, = Yomi1 = Yomi2 = oveveeen
Hence {y,} is a costant Cauchy sequence.

Case(ii): Suppose y, # yn+1 for all n.

As in case(i), d(Yant1, Yont2) < Bla(Yon, Yoni1))d(Yon, Yoni1) (7)
Since f(t) < 1 and y,, # yn41 for all n, it follows that

A(Y2nt1, Yont2) < d(Yons Yont1)- (8)
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Consider

d(y2n7 y2n+1) = d(y2n+17 an)
< a(Yans1, Yon) from(4)
a(fl’zwrl ) gl’zn)

ﬂ(a(SI%H»h TxZn))d(SI27L+17 szﬂ)
B(

a(y2n7 Yon—1 ))d(y27u yZn—l)

IA

< d(yZm y2nfl)- (9)

From (8) and (9), it follows that {d(y,, yn+1)} is a decreasing sequence of non-
negative real numbers and hence converges to some real number r» > 0 such
that lim d(Yn, Yni1) = 7.

n—oo

d(Y2n+1.Y2n
From (7), we have 42t12022) < 3(a(yn,, yons1))-
Letting n — oo, we get 1 < lim B(a(ygn; Y2n41)) < 1.
Hence lim o(Yan, Yan+1) = 0.
n—oo

But from (3), we have
0 < lim d(yan, Y2ns1) < Lim a(yon, Yons1) = 0.

n—oo n—0o0
Thus lim d(yon, Yan+1) = 0 and hence lim d(yn, Yni+1) = 0. (10)

n—oo n—oo

Now we prove that {y,} is a Cauchy sequence. In view of (10), it sufficient to
show that {y2,} is Cauchy.
Assume on the contray that {ys,} is not a Cauchy sequence. Then there exists
€ > 0 for which we can find two sequences {yapm, } and {yan, } of {y2,} so that
ny, is the smallest positive integer such that 2n, > 2m;, > k with
d(ykavank) 2 €. (11)

and d(Yam,,, Yon,—2) < €. (12)
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From(11) and (12), we have

€ < d(Yamy> Yany) < A(W2my> Yon—2) + A(Yon,—2, Yon—1) + d(Yon,—1, Yon,,)

< €+ d(Yong—2, Yong—1) + d(Yon—1, Yon,,)

letting & — oo and using (10), we get € < klim A(Y2my,» Yan,,) < € so that

Jim d(yom,,, yon,) = € (13)

letting & — oo and using (10) and (13) in

|d(y21n,k.+17 yan.) - d(?JZmW Z/an)| S d(y%n,ka y2mk+l) we have

klim A(Yompt1, Yon,) = € (14)

letting & — oo and using (10) and (11) in
|d(y2mk7 y2nk71) - d(y2mk7 y2nk)| S d(yanfly ank)y
we get
]gﬁ& d(y2mk7 y2nk71) = €. (15)

From (5), we have

A(Yomy+1, Y2n,) < (Y2myt1, Yony,)
= a(f<752mk+17 9%on,,)
< Bla(Wamys Yane—1))d(Y2my s Y2, —1) (16)
letting k — oo in (16), we get

€ S kllm ﬁ(a(yka7 y2n,k.—1) € from (14)7(15)

)
1 S éi@ﬁ(a(y2mk>y2nk—l))-
But Igim Ba(Yamy,, Yone-1)) < 1.

)
Thus Igi”; ﬂ(a(mek7 y2n,‘.71)) = 0. Hence klllono @(Qka7 ank—l) =0.

From (5) and (6) we have
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lim d(mekv yan—l) =0
k—oo
e =0 from (15). It is a contradiction.
Hence {y2,} is a Cauchy sequence.
From (10), it follows that {ya,.1} is also a Cauchy sequence.
Thus {y,} is a Cauchy sequence.
Suppose (6.11.6) holds.
Since Yop12 = Sonis € S(X) and S(X) is a complete subspace of X, there
exist z and u € X such that ya,,2 — 2 = Su.
Thus lim gronie = lim fro, 1 = lim Txopis = 2.
N—00 n—o00 n—oo

Now we have

d(fu,z) = d(fu,Su) < lim a(fu, yanrs)
= lim a(fu; groni2)

S lim ﬁ(a(Su, TIEZTH,Q))d(SU,TJ?QnJrQ)

S JLHOIC Bz, y2nt1))d(2, Yani1) = 0
which in turn yields that Su = z = fu.
Since (f,S) is weakly compatible, we have fz = fSu = Sfu= Sz

From (6.11.6), we have

d(Sz, z) < lim a(Sz, yani2)- (17)

n—oo

= lim « fZ, gI2n+2)

n—oo

n—00

(
< lim B(a(Sz, Twopi2))d(Sz, Twonss)
= lim ﬁ(()é(SZ, y2n+1))d(SZ, y2n+1)

= lim ﬁ(a(szv y2n+1))d(szu Z)

Thus 1 < lim B(a(Sz,yons1)) < 1

which in turn yields that lim «(Sz, yan41) = 0.

n—oo
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Hence from (17), d(Sz, z) = 0 so that Sz = z.

Thus fz =S5z = z.

Since f(X) C T(X), there exist a € X such that z = fz = Ta.

Now

a(z,ga) = a(Ta, go) = a(fz, go)

< B(a(Sz,Ta))d(Sz, Ta)
= fB(a(z,2))d(z, 2)
=0

which in turn yields that a(z, ga) =0

Thus ga = 2z =T«

Since (g, T) is weakly compatible, we have Tz = T'(ga) =¢Ta = gz.

Now
a(z,Tz) = a(fz,g2)

< B(a(Sz,Tz))d(Sz,Tz)
= B(a(z,T2))d(z,T=z).
Since 3(t) < 1 we have a(z,T2) = 0'so that Tz = z. Thus Tz = gz = z.

Thus z is a common fixed point of f, g, S and T
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CHAPTER 7

UNIQUE COMMON FIXED POINT THEOREM OF INTEGRAL
TYPE FOR FOUR MAPS IN DISLOCATED QUASI v--METRIC
SPACES

In this chapter we obtain two common fixed point theorems using contrac-
tive conditions of integral type in dislocated quasi b-metric spaces. We also
furnish examples which supports our results.

In 2002, Banaciari et al.[6] generalized the Banach contraction principle by
introducing the integral contraction. Afterwards many researchers extended
the results of Banaciari and obtained fixed point and common fixe point the-
orems using various contractive conditions of integral type in different spaces
for example (refer[1, 7,25, 37,65, 112]).

Before proving our theorems; we state the following.

Definition 7.1. Let I’ denote the class of functions p : Rt — RT which
are Lebesgue summable on each compact subset of R, non-negative and
f; p(t) dt > 0 for any s > 0. We observe the following

lim an
n—oo

(i) Lim (" p(t) dt = [ p(t) dt for any non-negative real sequence

{an}.

(i1) maz{ [} p(t) dt, fob p(t) dt} = Omaw{a’b} p(t) dt for any non-negative real

numbers a and b.

(@i) [y p(t) dt < h [ p(t) dt for any non-negative real number ¢ and 0 <

h < 1 implies a = 0.



Definition 7.2(M.U.Ali et al.[65]): p € I is an integral sub additive if for
each a,b > 0 one has a+b tydt < [ p(t)dt + fo

In the year 2018 M U Rahman et al.[67] proved the following theorem.

Theorem 7.3.(M U Rahman et al.[67]): Let (X,d) be a complete dislo-
cated quasi b-metric space, for a,b, c,e, f > 0 with Tﬂ’m 5> Where k > 1

and let 7 : X — X be a continuous self-mapping such that for all z,y € X

satisfying the condition

d(Tz,Ty) d(z,y) d(xz,Tx) d(y,Ty)
[ pt)dt<a f p(t)dt +b f p(tydt+e [ p(t)di+
d?y.muw(r Ta)) (e, Ty)d(y. Ty) 0
T+d(z,y) Eld(z,y)+d(y,Ty)]
e [ pwdi+f [ plt)dt
0 0

where p : Rt — RT is a Lebesque integrable mapping which is summable on
each compact subset of RT, non-negative and such that for any
s >0, f p(t)dt > 0. Then T has a unique fixed point.

In proving Theorem 7.3 the authors {67] inherently used integral sub addi-
tive definition of [65] (namely,Definition 7.2)

Now we prove two unique common fixed point theorems for four maps using
integral type conditions in dislocated quasi b-metric spaces.

Theorem 7.4. Let (X, d) be a complete dislocated quasi b- metric space
with fixed integer £ > 1, 0 < h < 1 with hk < 1 and F,G,5,T : X — X be
continuous mapping satisfying

(7.4.1) J, d(Fe,Gy) p(t)dt < thM' (@) p(t)dt, for all z,y € X and p € T’ where

d(Sz, Ty), ;kd(Sx Fz), id(Ty7 Gy)
M (z,y) = max
ikd(Sx, Gy), %d(Ty, Fz)
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(7.4.2) fod(GI’Fy) p(t)dt < h fOMZ(E’y) p(t)dt, for all z,y € X and p € T where

d(Tz,Sy), 3xd(Tx, Gx), 5:d(Sy, Fy)

My(x,y) = max o o

ﬁd(T:v7 Fy), id(Sy7 Gx)
(7.4.3) F(X) CT(X) and G(X) C S(X) ,
(7.4.4) FS = SF and GT = TG.
Then F,G,S and T have a unique common fixed point in X.
Proof: Let 2y € X.
From (7.4.3), there exist sequences {x,} and {y,} in X such that
Yon = Fgy = Topq1,
Yont1 = GTon1 = STopia,n=0,1,2, ...
Case(i): Suppose maz{d(Yn—1,Yn), d(Yn, Yn=1)} = 0 for some n.
With out loss of generality assume that'n'= 2m. Then 4o, 1 = Yom.-

Consider from (7.4.1),

d(y2m Y2m+1) d(Fzom,Gram41)
sa—" T pleya
0
d(z2m,T2m+1)

<h [ pt)dt
0

From Note 1.12.6 (Ch-1) and Case(i), we have

d(Yam—1, Yam), ﬁd(?hm—h Yom), ﬁd(ymm Yomi1),
My (22m, Tam+1) = max : :
ﬁd(yhn—lv Yom+1), ﬁd(yva Yom),
d(yZm—la y2m)7 d(yZm,—la y2m)7 d(y2m7 y2m+l)7
S max max {d(yZm—h me); d(y2m7 y2m+1)} )
max {d(y2m: y2m+1)7 d(y2m+1: y2m)}

= max {d(yva z/2m+1)7 d(y2m+17 y?m)} .

d(y2m,Y2m-+1) maz{d(y2m,Yy2m+1),d(Y2m+1,y2m)}
Thus we have J p(t)dt < h J p(t)dt
0 0
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From (7.4.2), we have

d(yY2m41,Y2m) d(Gzam+1,F2m)
p(t)dt = J p(t)dt
0
Ma(22m+41,22m)
<h Ik p(t)dt
0

From Note 1.12.6 (Ch-1) and Case(i), we have

d(yZ'nn y2m—1)7 id(y%n*, y2m+1)7 id(y%nfla y2m)7
]\42($2m+17 $2m) = max
id(yZm; y2m)7 ﬁd(yZm—l: y2m+1)
d(y2m> y?m,71)7 d(y2m7 y2m+1)7 d(meflv y2m)7
S max max {d(y2"H y21n,+1)7 d(y2m+17 y21n)} )
max {d(y2m—17 me)a d(yZm; y2m+1)}

= max {d(y2m7 y2m+1)~, d(y2m+17 y2m)} .

Thus

d(Y2m+1,y2m) maz{d(y2m y2m+1),d(Y2m+1,Y2m )}
p(t)ydt < h / p(t)dt.

0 0
Hence we have
maz{d(y2m,y2m+1),d(y2m+1,y2m)} maz{d(y2m y2m+1),d(y2m+1,y2m)}
p(tydt < I f p(t)dt

0 0

which in turn yields that  maz{d(¥om, Yom+1), d(Y2m, Yom+1)} = 0

so that, Yo = Yom+1-

Continuing in this way, we can show that yo,—1 = Yam = Yoms1 = -
Thus {y,} is a constant Cauchy sequence in X.

Case(ii): Suppose that maz{d(yan, Y2n+1), d(Yon+1, Y2n)} > 0 for all n.
As in Case(i), we have

max{ d(y2n—1,Y2n),d(Y2n,y2n—1), }

max{d(y2n,y2n+1),d(y2n+1,y2n)} d(y2n,y2n+1),d(Y2n+1,Y2n)

p(t)ydt < h / p(t)dt (1)

If max{d(an—lv y2n)7 d(yQ'm y?nfl)} S mlll"{d(yzm y2n,+1)7 d(y2n+1 3 y?n)}

then from (1), we have
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max{d(y2n,y2n+1),d(Y2n+1,y2n)} max{d(y2n,y2n+1),d(Y2n+1,y2n)}
p(t)dt <h / p(t)dt

0 0
which in turn yields that  maz{d(yon, Yans1), d(Y2n+1, y2n)} = 0.
It is a contradiction to the Case(ii).

Hence from (1), we have

max{d(y2n,y2n+1),d(Y2n+1,y2n) } max{d(y2n—1,y2n),d(Y2n,y2n—1)}

p(t)dt < h / p(t)dt.
0 0
max{d(yn,yn+1),d(Yn+1,yn)} max{d(yn—1,yn),d(Yn,yn—1)}
p(t)dt < h J p(t)dt
0 0
max{d(yo,y1),d(y1,y0)}
<wi T pyar 2)

0
Now for all positive integers n; p and using(2), we have

d(yna yner) S kd(ynv yn+1) + de(yn+1 ) yn+2) + ...+ kpd(yner—l 5 yner)
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Since p is integral sub additive, we have

d(Yn,Yn+p)
p(t)dt
0
kd(yn yn+1)+k>d(ynt1,yn+2)+ AR dYntp—1,Yn+p)
< p(t)dt
0
kd(yn,yn+1) E2d(yn-+1,9n+2) KPA(Yn+p—1,Yn+p)
= [ pt)dt+ J p(t)dt + ...+ J p(t)dt
0 0 0
d(yn,Yn+1) d(Yn+1,Yn+2) A(Yn+p—1,Yntp)
<k [ pt)dt+k [ pl)dt+ ... + kP J p(t)dt
0 0 0
max{d(yo,y1),d(y1,90)} max{d(yo,y1),d(y1,90)}
< kh" f p(t)dt + k*hn+t f p(t)dt + ......
0 0
max{d(yo,y1),d(y1,50)}
+kPptPL S p(t)dt
0
. max{d(yo,y1),d(y1,y0) }
< A of p(t)dt since hk < 1

—0asn— oo, since 0 < h < 1.

Thus lim d(yn, Yn+p) = 0.
n—oo
Similarly we can show that lim d(yn+p, yn)=0.
n—oo
Thus {y,} is a Cauchy sequence in X.
Since X is complete dislocated quasi b-metric space, there exists z € X such
that {y,} converges to z. Since S and F' are continuous and SF = F'S we
have Sz = lim Sys, = lim SFxy, = lim FSxs, = lim Fys, 1 = Fz.
n—oo n—oo n—0o0 n—o0
Similarly, since T" and G are continuous and TG = GT" we have Tz = Gz.

From (7.4.1), we have
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d(Sz,Tz) d(Fz,Gz) Mi(z,2)

[ oedt= [ pt)dt < [ pt)dt
0 0 0

d(52,Tz), 5:d(5z, Fz), 5d(Tz,Gz),

Mi(z,2) = max ok

2d(Sz,Gz), 5d(Tz, F~)
d(Sz,Tz),max{d(Sz,Tz),d(Tz,5z)},
< max
max{d(Tz,Sz),d(Sz,Tz2)},d(Sz,Tz),d(Tz,S5%)
=max{d(Sz,T%),d(Tz Sz)}.

d(Sz,Tz) max{d(Sz,Tz),d(Tz,5z)}

Thus [ p(t)dt < h Ik p(t)dt.
0 0
Similarly using (7.4.2), we can show that
d(Tz,5z) max{d(Sz,Tz),d(Tz,5z)}
[ pt)dt < h / p(t)dt.
0 0
Thus we have
max{d(Sz,Tz),d(Tz,5z)} max{d(SzTz),d(Tz,5z)}
J p(t)dt < h i p(t)dt
0 0

which in turn yields that maz{d(Sz,Tz),d(Tz,Sz)} = 0.
Hence Sz = T.

Let u=5Sz=1Tx.

Then Su = S(Sz) = S(Fz) = F(Sz) = Fu and
Tu=T(Tz) =T(Gz) = G(Tz) = Gu.

From (7.4.1), we have

d(Su,u) d(Fu,Gz)
plt)dt= [ p(t)dt
0
M (u,z)

<h [ plt)d
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d(Su,Tz), 5 d(Su, Fu), 5-d(Tz, G=)

M (u, z) = max

2 d(Su, Gz), 5-d(Tz, Fu)

d(Su,u), max {d(Su,u), d(u, Su)},

< max
max {d(u, Su), d(Su,u)}, d(Su,u),d(u, Su)
= max {d(Su,u),d(u, Su)} .
d(Su,u) mazx{d(Su,u),d(u,Su)}

Thus [ p(t)dt <h Ii p(t)dt.
0 0

Similarly, using (7.4.2), we can show that
d(u,Su) maz{d(Su,u),d(u,Su)}

[ p()dt <h / p(t)dt.

Thus we have
maz{d(Su,u),d(u,Su)} maz{d(Su,u),d(u,Su)}
p(t)dt < h J p(t)dt
which in turn yields that maz{d(SfL, w), d(u, Su)} = 0.
Hence Su = u.
Thus Su =u = Fu.
Similarly we can show that Tu = u = Gu.
Thus u is a common fixed point of £, G, S and T'.
Let u* be another common fixed point of F, G, S and T'.

Then Fu* = Su* = u* = Tu* = Gu*.

Consider from (7.4.1), we have

d(u,u*) d(Fu,Gu*)
[ opdt= [ p(t)dt
0 0
My (uu*)
<h [ p(t)dt
0
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d(Su, Tu*), &d(Su, Fu), &d(Tu*, Gu*),

M (u, u*) = max Sk 2

2 d(Su, Gu*), d(Tu*, Fu)

d(u, u*), max {d(u,u*),d(u*,u)},

< max
max {d(u*, u), d(u,u*)}, d(u, u*), d(u*, w)

= max {d(u,u*),d(u*,u)}.

d(u,u*) maz{d(u,u*),d(u* u)}
Thus [ p(t)dt <h Ii p(t)dt.
0 0
Similarly using (7.4.2), we can show that
d(u*,u) maz{d(u,u*),d(u* u)}

[ p(t)dt < h / p(t)dt.

Thus we have
maz{d(u,u*),d(u* u)} maz{d(u,u*),d(u* u)}
p(t)dt < h J p(t)dt

which in turn yields that ’maz{d('z, u*),d(u*u)} =0
Hence v = u*.
Thus u is unique common fixed point of F, G, S and T'.

Now we give an example to illustrate our Theorem 7.4

Example 7.5. Let X = [0,1] and d(z,y) = |27 — y|* + |2 + y|*.
Let I,G,S, T : X — X be defined by Fz = 5, Gr = ],
Sr =7 and Tz = §.
Let p: RT — RT be defined by p(t) = 1.
Clearly d(z,y) = d(y,x) = 0 implies that z = y.

Consider
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d(z,y) = [22 — y|* + [22 + y|?

d(w,y) = 20 —y" + 20+ y/°
=20 —z+z-yP+20+z2—-z+y]
<220 — o o |2 =yl o 120 4 o 4 |2+ o]
<2[120 — 2> + 122 — yI* + 22 + 2> + 22 + y|*]
=2[20 — 2 + 22 + 2[* + 22 — y|* + 22 + ¢|*]
=kld(z,z) +d(z,y)], where k=2
Consider

d(Fz,Gy) d(55.3p)

_L«T,lf }21 1’2
|16 24 +16+24

_ 1 E_gyz 2z gf
716[|4 6 +|4+6
_ 1 E_gyz ‘;z 3‘2
716[|4 6 + 4+6

= 15 [d(Sz, Ty)]

16
d(Sz,Ty)
1
=15 Of 1dt
My (z,y)

d(Sz, Ty), id(Sz, Fz), id(Ty, Gy),

where M;(x,y) = max
id(Sx, Gy), id(Ty, Fuz)

Thus (7.4.1) is satisfied. Similarly we can verify (7.4.2). Also it is clear that
F,.G,S and T are continuous, FS = SF, GT =TG and
F(z) CT(X),G(X) C S(X). Thus all conditions of Theorem 7.4 arc satisfied.

Clearly 0 is the unique common fixed point of F, G, S and 7" in X.
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Theorem 7.6. Let (X, d) be a dislocated quasi b-metric space with fixed
integer £k > 1,0 <h < 1land F,G,S,T: X — X be mappings satisfying
(7.6.1) _Ud(Fz’Gy) p(t)ydt < h foMl(z"y) p(t)dt for all 2,y € X , p € T and p is
integral sub additive and
M (z,y) = ﬁ max {d(Sz,Ty),d(Sx, Fz),d(Ty,Gy),d(Sz,Gy),d(Ty, Fx)}
(7.6.2) fod(cw’py) p(t)dt < hfoﬂ'jz(x’w p(t)dt for all z,y € X p € T and p is
integral sub additive and
M (z,y) = 5z maz {d(Tx, Sy),d(Tz,Gz),d(Sy, Fy),d(Tz, Fy),d(Sy, Gz)}
(7.6.3) F(X) CT(X) and G(X) C S(X) ,

(7.6.4) one of T'(X) and S(X) is a complete subspace of X and

(7.6.5) the pairs (F,S) and (G, T) are weakly compatible.

Then F,G,S and T have a unique common fixed point in X.

Proof: As in proof of Theorem 7.4, the sequence{y,} is Cauchy

where o, = Fao, = Txopny1,

Yon+1 = GTopi1 = STopso,n=0,1,2,....

Assume that S(X) is a complete subspace of X.

Since yant1 = STanio € S(X), there exists z € S(X) such that yo,1 — 2.
Hence there exists u € X such that z = Su.

Since {y,} is Cauchy sequence we have ys, — 2.

By Lemma 1.12.5 (Ch-1) and (7.6.1) we have

%d(Fu,z) nleOC d(Fu,Gzant1)
Joemas O e
0 0
d(Fu,Gran+1)
= lim Ik p(t)dt
n—oo
M (u,x2n41)
< h lim [ p(t)dt
n—oo 0



d(Su, Tx2n+1) d(S"lL7 F‘U)7 d(T-%'ZTH»la G.%'Q,H,l),
lim M (u, x9p41) = lim W max

n—oo n—oo

(
d(Su, Gropy1), d(Txon 41, Fu)
d(2,y2n), d(z, Fu), d(yon, Yant1),
< lim %2 max
n—oo (

d(z, Yon+1), d(Yan, Fu)

2:d(z, Fu), by Lemma(1.12.5)(Ch — 1)

IN

< 1d(z, Fu).

Thus
%d(Fu,z) %d(z,Fu)

[ oetdt<h [ ptt W
0 0
By Lemma 1.12.5 and (7.6.2), we have

La(z,Fu) Jim d(Grang1,Fu)
S p()dt < / p(t)dt
0 0
d(Grany1,Fu)
= lim J p(t)dt
Mz (22n41,u)

< h lim [ plt)dt

n—00 0

d(Txoni1, Su), d(Tx9,1, Gropst), d(Su, Fu),
lim M (2ans1, Fu) = limﬁmax (Twoni1, Su), d(Twonia n1), d( )

n—oo n—00

) d(TIZTH»lv FU)7 d(SU/ Gx2n+1)
d(y2n7 Z)v d(y2n7 Yon+1 )7 d(zv F“)v

d(y2n> F“)7 d(Z, y2n+1)

> d(z, Fu),by Lemma 1.12.5 (Ch —1)

< lim W max

n—oo

IN

IN

1d(z, Fu).

Thus we have

% (z,Fu) %d(z,Fu)
[ opt)dt<h [ p(t)dt
0 0

which in turn yields that d(z, Fu) = 0

From(1), d(Fu,z)=0. Thus z = Fu.

Hence Su = z = Fu.
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Since (F, S) is weakly compatible, we have Sz = SFu = FSu = Fz.
From Lemma 1.12.5 (Ch-1) and using (7.6.1), we have

La(sz,z2) Jim d(Fz,Grangr)
P awa<p s
0

0
d(Fz,Gxont1)

= lim Ik p(t)dt

My (z,22n41)

S
—~

Sz, Txons), d(Sz, Fz), d(Txomsr, Grontr),
lim M;i(z, Zont1) = hm 2k2 max

n—oo

d(SZ GI2n+1) d(Tx2n+17FZ)
d(SZ y2n) (vaz)vd(y2n-,?/2n+l)7

d(S2, yans1), A(Yan, F2)
o max {d(Sz, 2),d(2,52)}

< lim max
n—oo 2k2

| /\

< 1 max {d(Sz,2),d(z,52)} .

Thus
%d(Sz,z) %max{d(Sz,z),d(z,Sz)}
/ p(t)dt < h / p(t)dt.
0 0

Similarly using (7.6.2) and Lemma 1.12.5 (Ch-1) we can show that

+d(z,52) + max{d(Sz:z),d(Z,Sz)}
/ p(t)dt < h / p(t)dt.
0 0
Thus we have
+ max{d(Sz,z),d(z,52)} + max{d(Sz,2),d(z,52)}
[ ewasn [
0 0

which in turn yields that Sz = z.
Thus Fz= Sz = z.

Since F'(X) € T'(X), there exists v € X such that z = Sz = Fz=Tv
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Consider from (7.6.1), we have

d(Tv,Gv) d(Fz,Gv)
ptydt = [ p(t)dt
0 0
M (z,v)

<h [ pt)dt

d(Sz,Tv),d(Sz, Fz),d(Tv,Gv),

M (z,v) = 55z max
d(Sz,Gv),d(Tv, Fz)
o d(Tv,Tv),d(Tv,Tv),d(Tv,Gv),
iz I

d(Twv, Gv),d(Tv,Tv)

< max{d(Tv,Gv),d(Gv,Tv)} .

Thus
d(Tv,Gv) max{d(Tv,Gv),d(Gv,Tv)}
p(t)dt < / p(t)dt
0 0
d(Gv,Tv) d(Gv,Fz)
[ opydt= [ <p(t)dt
0 0
M3 (v,z)
<h [ pt)dt
0
d(Tv,Sz),d(Tv,Gv),d(Sz, Fz),
Ms(v, z) = 555 max
d(Tv, Fz),d(Sz,Gv)
d(Tv, Tv),d(Tv,Gv),d(Tv,Tv),
= ﬁ max
d(Tv,Tv),d(Tv, Gv)
< max {d(Tv,Gv),d(Gv,Tv)}.
Thus
d(Gv,Tv) max{d(Tv,Gv),d(Gv,Tv)}
p(t)dt <h / p(t)dt.
0 0
Hence we have
max{d(Tv,Gv),d(Gv,Tv)} max{d(Tv,Gv),d(Gv,Tv)}
p(t)ydt < h / p(t)dt
0 0
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which in turn yields that Gv =Tv = 2.
Since the pair (G, T) is weakly compatible, we have Tz = TGv = GTv = G=z.
From (7.6.1), we have

d(z,Tz) d(Fz,Tz)
[ pt)dt= [ p(t)dt
0

0

M (z,2z)
<h [ pt)dt
0

d(Sz,Tz),d(Sz, Fz),d(Tz,Gz),
Mi(z,2) = 555 max
d(Sz,Gz),d(Tz, Fz)
d(z,Tz),d(z,2),d(Tz,Tz),
= 5}z max

d(z,T2),d(Tz,2)

<max{d(z,Tz),d(Tz,2)}-

Thus
d(z,Tz) max{d(z,Tz),d(Tzz)}
/ pt)ydt <Ch / p(t)dt.
0 0

Similarly we can show that

d(Tz,2) max{d(z,Tz),d(Tzz)}
pt)ydt < h / p(t)dt.
0 0
Hence we have
max{d(z,Tz),d(Tz,z)} max{d(z,Tz),d(Tz,z)}
pt)ydt < h / p(t)dt
0 0

which in turn yields that Tz = z.

Thus Gz =Tz = z.

Thus z is a common fixed point of F, G, S and T.

Uniqueness of common fixed point follows easily from (7.6.1) and (7.6.2).

Now we give an example to illustrate Theorem 7.6
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Example 7.7. Let X = [0,1] and d(z,y) = |2z — y|* + |2z + y|*.
Let F,G,S,T : x — X be defined by Fz = {5, Gz = 5z, Sz = &
Tz =2 Let p: RT — R* be defined by p(t) = 1.

As in Example 7.5, d is a dislocated quasi b-metric with & = 2.

Consider
d(Fz,Gy) d(Fz,Gy)
p(t)dt = [ 1dt
0 0
=d(Fz,Gy)
2 2 2 2 2 2
= |61~ 2%| T|61 T 2%
! 22 o 2 2 | 2 2
w||T "6 T|Tte

L1282 — Ty|* + |2z + Ty|’]

256
= 555 1d(Sz, Ty)]
d(Sz, Ty), d(Sx, Fx),d(Ty, Gy),

1 .
< hgz max

d(Sz, Gy), d(Ty, Fx)

0
Mi(z,y)
=h [ p(t)dt.
0
Thus (7.6.1) is satisfied. Similarly we can verify (7.6.2).

One can easily verify all the remaining conditions of Theorem 7.6 and

2z = 0 is the unique common fixed point of F,G,S and T'.
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ABSTRACT

In this paper we obtain a common fixed point theorem for three expansive mappings and
a unique common fixed point theorem for two Jungck type expansive mappings in G-

metric spaces.

Key words : Expansive mappings, G- metric space, weakly compatible mappings.

Subject classification: 47 H 10, 54 H 25
1. INTRODUCTION

Dhage™*** et al. introduced the
concept of D —metric spaces as generalization
of ordinary metric functions and went on. to
present several fixed point results for single
and multivalued mappings. Mustafa‘and Sims®
and Naidu et al.'*'""* demonstrated that most
of the claims concerning the fundamental
topological structure of D:— metric space are
incorrect . Alternatively, Mustafa and Sims®

introduced more appropriate notion of
generalized metric space or a G — metric
space and obtained some topological

properties in it . Later Zead Mustafa, Hamed
Obiedat and Fadi Awawdeh’, Mustafa,
Shatanawi and Batainehg, Mustafa and Sims97
Shatanawi'” and Renu Chugh, Tamanna
Kadian, Anju Rani and B. E. Rhoades' ef al.
obtained some fixed point theorems for a
single map in G- metric spaces. In this paper,
we obtain a unique common fixed point
theorem for six weakly compatible mappings
in G — metric spaces. First , we present some

known definitions and propositions in G —
metric spaces .

Definition 1.1[6]: Let X be a nonempty set
and let G: X x X x X = R" be a function
satisfying the following properties :

G): Gixy,2)=0, ifx=y=z,

(Gy)): 0<G(x,x,y) forall x,y € X with
X#Y,

G)): GX,xy)<GX,y,z)forallx,y,z
e X withy #z,

(G4): G(Xayaz):G(XsZay):G(y>ZsX)
=..., symmetry in all three variables,

Gs): GX,¥2z)<G(x,aa)+G(a,y, z)

forallx,y,z,a € X.
Then the function G is called a generalized
metric or a G — metric on X and the pair (X, G)
is called a G- metric space.

Definitionl. 2 [6] : Let (X, G) be a G- metric
space and {x ,} be a sequence in X. A point X
e X is said to be limit of {x,}
iff lim G(x,x,,x,)= 0. In this case , the

n, m—yeo

Journal of Computer and Mathematical Sciences Vol. 1, Issue 6, 31 October, 2010 Pages (636-768)

167



717

sequence {X ,} is said to be G — convergent to
X.

Definition 1.3 [6] : Let (X, G) be a G- metric
space and {x ,} be a sequence in X. {X ,} is
called G- Cauchy iff

lim G(x,X,,X;,)= 0. (X, G) is
L, n,m—eo
called G —complete if every G—Cauchy
sequence in (X, G) is G-convergent in (X, G).

Proposition 1.4 [6] : In a G- metric space,(X,
G), the following are equivalent.
(1) The sequence {x,} is G- Cauchy.
(2) For every € > 0, there exists N €N such
that G (X 1, X my X m) < €, for all n, m >
N.

Proposition 1.5 [6] : Let (X, G) be a G-
metric space. Then the function G (x, y, z) is
jointly continuous in all three of its variables.

Proposition 1.6 [6] : Let (X, G) be a G-
metric space. Then for any X, y, z, a €X, it
follows that

(1) if G(x,y,z)=0thenx =y =z,

(i) G(x,y,z) < G(x, x,y) + G(x, X, 2),

(iii) G(x, y. y) < 2G(x. X, y),

(iv) G(x, y, z) < G(x, a, z) + G(a, y, 2),

V) G(x,y,2) < %[G(x, a, a) + G(y, a,a) +
G(z, a, a)].

Proposition 1.7 [6] : Let (X, G) be a G-
metric space. Then for a sequence {x,} < X
and a point

x € X, the following are equivalent .

(1) {xa} is G- convergent to X,

(i) G(Xpy Xy X) = 0asn — oo,

(1i1) G(X 4, X, X) > 0 as n — oo,

(iv) G(X my Xy X) > 0 @as m, n — oo,

K. P.R.Rao etal, J. Comp. & Math. Sci. Vol. 1 (6), 716-720 (2010)

2. MAIN RESULTS

Theorem 2.1: Let (X, G) be a complete G-
metric space . If there exist a constant q > 1
and surjective mappings A, B and C on X
such that G(Ax,By,Cz) =qmax {G (x, Y, 2),
G(x, Ax, Cz), G(y, By, Ax), G(z, Cz, By)} for
all x,y,z € X, then
a) A or B or C has a fixed point in X,
(or)

(b) A, B and C has a unique common fixed

point in X.
Proof: Letx o € X,
There exist x;, X, X3 € X such thatx y = A x|,
X1 =BX2,X2 =CX3.
By induction, we have
X3n = A Xanet> X 3011 = B Xani2, X 3ni2 = C X3pis,
n=0,1,2,...
If X351 = X3, then Ax =x, where x =X 3,,.
If X352 = X3p41 then B x = x, where X = X 3,41.
If X343 = X342 then € X = X, where X = X 342,
Assume that x, # X, foralln.
Denote d, = G (X, Xnr1, Xns2 )-
dan 1 = G (X301, X3n, X3n+1) = G (C X3p, A X341 B
X3n+2)
> q max

G(X3p+15X3n+25X30)> G(X3n 415 X305 X30-1)s
G(X3n425X3n415X3n)> G(X3n X 3015 X3n41)

=qmax {d sy, d3p.1, dan, d3p -
Thus we have ds,| = q d3, so that d3, < k dsp

1
where k= — <1. ..(1)
q
dzn = G( Xsn, Xaner, Xan2) = G( AXzper,
BXan2,CX3n43)
2> q max
G(X3p41:X30+25X3043)> G(X3415 X305, X3042)5
G(X3n+25X3041>X30 ) G(X 30435 X 3042, X3n41)
=qmax {dsn+1, din, dzn, d3pe1 }-
Thus we have dj, > q dspig so that iy
<kds, -(2)
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ds3nit = G( Xane1, Xan12, X3n13) = G (BX3pi2, CXapez,
AX3nia)
2 q max

G(X3044>X30425X304+3), G(X3014>X3043,X3042)s
G(X3042X3041-X30+3)> G(X30435X30425X3011)
=qmax {dsn2, dini2, d3ni1s dinir}

Thus we have djni = q diee so that dso <k

d3nen n(3)

From (1), (2), (3) we have d, <k d,y n =

From (Gs), we have

G( Xn, Xn, Xn+1 ) < G( Xp, Xn+1, Xni2 )
<k G( Xpe1, Xn, Xn+1)
< k2 G( Xn-2, Xn-1, Xn)

<k " G(xp X1,X2).
Now, using (Gs) , form>n
G(X 5, X X m) € G(X o, X n, Xnr1) T G(Xne1, Xner,
Xn2) + G(Xps2, Xni2, Xne3) + oo + G(Xiet, Xme1, Xim)
Sk "+ K"+ K"+ K™Y G (X0, X1, X2)
n
< ——G(xo, X1, X2)
—0as n—> co,m—> oo,
Hence {x ,} is G — Cauchy. Since (X, G) is
complete, there exists p € X such that {x,}is
G- convergent to p. Now
G( Ap, X3n+1, X3n42) = G (A P, BX3n12, CX3n43)
2 q max
{G (P> X3n+2> X3n+3)> G(Ps A P, X3442)s }
G (X3n425 X341, AP G (X303 X30425 X3041)
Lettingn —> oo, we get
G(Ap,p,p) 2qmax {0,G(p, Ap, p) ,G(p,
P, Ap), 0}.
Thus G(A p,p, p) =0 so that Ap =p.
G( x30, Bp. X3042) = G (AXspe1, Bp CX3ne3)
2 q max

718

{G (X3n41> P> X343 ), G(X3n115 X35 X3n+2)7}
G(p, Bp, x3,,),G(X3p43 X3n42, BP)

Letting n — oo, we get

G(p.Bp,p) 2qmax {0,0,G(p.Bp,p).G

(p.Bp ., p)}-

Thus G( p ,Bp, p) =0 so that Bp = p.

G( X3n, X3n+1, Cp) = G( AXzpi1, BX3ni2,Cp)

2 max

{G (X3n+1> X3n425> P)s G(X3n 415 X35, Cp), }

G(X 3n+2> X3n+1> X3n ):G(p7 Cps X3n+1)
Letting n —> oo, we get
G(p, p, Cp) =q max {0.G(p. p,Cp), 0.G(p,
Cp, p);}-
Thus G( p, p, Cp) = 0 so that Cp =p.
Thus p is a common fixed point of A, B and C.

Suppose p' is another common fixed point of
A,Band C .
G(p, p:p") = G(Ap, Bp.CP")
> q max{G(p, p.p"). G(p, p.p )0,
G(p'.p'p) }

, 1
2 qmax {G(p, p,P ),5 G

(p-p.p")} since G(p, P, ') <2 G(p'.p'.p)
=qG@p.p.p).
Hence p' = p.

Thus p is a unique common fixed point of A, B
and C.

Corollary 2.2: Let (X, G) be a complete G-
metric space. If there exist a constant q > 1 and
surjective mapping T on X such that

G(T x,T y,T z) 2 q max{G(x, y, z),G(x, T x,
T2),G(y, Ty, Tx),G (z, Tz, T y)} for all x, y ,z
e X,

then T has a unique fixed point in X.

Proof: Let xy € X.
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There exists a sequence {x ,} in X such that x
=T Xp,n=0,1,2...

If x , =X, for some n then T x = x, where x
=X pil.

Assume that x ,, # X 4, for all n.

The rest of the proof follows as in Theorem
2.1.

Theorem 2.3: Let (X, G) be a G — metric
space and A, f: X —> X be satisfying
231) G (A x, Ay, A z) 2 q max

G(fx,fy,fz),G(fx,AxTfz),
Gy Ay, x),G(fz,Azfy) ’

forall x,y, zeX, where q > 1,

232) f (X) CAX) and f (X) is a G —
complete sub space of X and

(2.3.3) the pair (A, f) is weakly compatible.
Then A and f have a unique common fixed
point .

Proof : Let xy e X.

From (2.3.2), there exists x 1€ X such that fx
=Ax | =y, say.

Inductively, there exist sequences {x ,} and {y
af in X such that

X =AX,=yn,n=1,2,3, ...

Case (i): Suppose y , =y, for some n.Then
fx nl = Ax n-l-

Thus fp = Ap where p =X ;.

Since (A, p) is weakly compatible, we have f’p
= f( fp) = f(Ap) = Afp = Ap.

G(Azp,Ap,Ap) > q max {G(fAp, fp, fp),G(fAp,

AAp, 1p),G(fp, Ap, fAp),G(fp, Ap, fp)}

= q max {G(A’p.Ap.Ap), G(A'p,A *p.Ap),

G(Ap,Ap,A°p), 0}

> q G(A *p, Ap, Ap), since G(A%p,Ap,Ap) <2

G(Ap, A ’p, A’p)

Hence A 2p = Ap. Then fAp=A 2p = Ap.

Ap is a common fixed point of f and A.

Case (ii) : Assumethat y, # y,. for all n

K. P.R.Rao etal, J. Comp. & Math. Sci. Vol. 1 (6), 716-720 (2010)

GOnt Y1, ¥ o) = GlAXns, AX o, AX)
> q max {G(yn’ Yn» yn+1)7 G(Yns Yn-15 yn+l)’ }
G(Ym Yn-1>Yn ): G(Yn+1> Yn> yn)

2 max

G(Yn > Yno Yn+l )’ G(Yn»l > Yn-1> Yn)’

1 >
EG(Yn—l > ¥Yn-1> Yn)’ G(YIN Yns Yn+1)

since G(Yn-la Yo, Yn) < G(Yn-h Y YnH)

and G(Yn-ly Yots YH) < 2 G(Yn—ly Y Yn)-

Thus G(Yn-1, Y1 Yn) 29 G(Yn Y s ¥ n1)-
Hence G(yn, ¥ n ¥ ne1) £k G(¥aet, ¥ ety ¥ 0,

where k= —<1
q
<k’ G(Ya2 Y2 Y1)
<k’ G(¥as Vs Yn2)

<k"G(yo,Yo YD
Now, using (Gs), for m < n we have
G(¥n Y Yu) SG(¥ns Yo Ym0t G(¥nrt, Yomet, ¥
n+2) t. 8 + G(Ym-l, Y m1, Ym)
S K"K+ k™) Glyo LYo Y1)
kn
=577 GGo,YoyD
1-k

— 0 as n— oo, m—>eo,
Hence {y,} is G-Cauchy.
Since f(X) is G- complete, there exists p, t € X
such thaty, > p="ft.
G(ALYn, ym) = G(AL, AXy, A Xy)

2 q max{G(p, yu1, Yur1).G(p, At,
Yurt)s Gty ¥ s P).G(Ynet, Yoo Y )}
Letting n — oo, we get
G(At,p,p)2qG(p, At,p)
Thus At=p. Hence ft=At.
As in case (i), ft (= A t = p) is the unique
common fixed point of f and A .
Uniqueness: Suppose P' is another common

fixed point of A and f.
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7.

G(p,p, P’ )= G(Ap, Ap, ApP’)

> q max {G(p, p.P’), G(p, p. D),

0.G(p". p’.p)}

’ 1 ’
quax {G(p9p’p )75 G(pvp’p )}

4
=qG@,p.p)-
Hence p' =p.
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1. INTRODUCTION

It is a well-known fact that the mathematical results regarding fixed points of con-
traction type mappings are very useful for determining the existence and uniqueness
of solutions to various mathematical models.Over the last 40 years,the theory of fixed
points has been developed regarding the results that are related to finding the fixed
points of self and nonself nonlinear mappings in a metric space.

The study of fixed points for multi-valued contraction mappings was initiated by
Nadler[18] and Markin[8].Several authors proved fixed point results in different types
of generalized metric spaces[1, 3, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19].

Azam et al.[1] introduced the concept of a complex valued metric space and obtained
sufficient conditions for the existence of common fixed points of a pair of mappings sat-
isfying a contractive type condition.Subsequently,Rouzkard and Imdad [6] established
some common fixed point theorems for maps satisfying certain rational expressions in
complex valued metric spaces to generalize the results of [1].In the same way, Sintu-

navarat et al. [21, 22] obtained common fixed point results by replacing the constant of

©2016 Asia Pacific Journal of Mathematics
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contractive condition to control functions.Recently ,Sitthikul and Saejung [9] and Klin-
eam and Suanoom [4] established some fixed point results by generalizing the contrac-
tive conditions in the context of complex valued metric spaces.Very recently,Ahmad et
al.[7] obtained some new fixed point results for multi-valued mappings in the setting
of complex valued metric spaces.

Throughout this paper,N and C' denote the set of all positive integers and the set of
all complex numbers respectively.

A complex number z € C'is an ordered pair of real numbers, whose first co-ordinate
is called Re(z) and second co-ordinate is called I'm(z). Let 21, 2o € C. Define apartial
order = on C' as follows:

21 3 7 if and only if Re(z) < Re(z2), Im(z1) < Im(z2).

Thus z; 2 z if one of the following holds:

(DRe(z1) = Re(z) and Im(z) = Im(z2),

(2)Re(z1) < Re(zy) and I'm(z1) = I'm(zy),

(3)Re(z1) = Re(z) and Im(z) < Im(z),

(4)Re(z1) < Re(zo) and Im(z1) < Im(za).

We will write z; 3 2, if 2, # 2, and one of (2), (3) and (4) is satisfed;also we will write
21 < 2y if only (4) is satisfed.

Definition 1.1. ([1]) Let X be a non empty set. A function d : X x X — C is called a
complex valued metric on X if for all x,y, 2 € X the following conditions are satisfied:
(1) 0 2 d(x,y) and d(z,y) = 0.if and only if x = y;

(i) d(z,y) = d(y, v);

(iii) d(z,y) 3 d(z, z) + d(z,y).

The pair (X, d)is called a complex valued metric space.

Let {z,,} be a sequence in X and x € X.If for every ¢ € C' with 0 < ¢ there is ny € N
such that for all n > ng,d(z,,x) < ¢,then {z,} is said to be convergent to = and z is
called the limit point of {z, }.We denote this by lim,, .2, = x or z, — x as n — oo.If
for every ¢ € C with 0 < ¢ there is ny € N such that for all n > ng, d(,, T,1m) < ¢,
where m € N,then {z,} is called Cauchy sequence in(X,d).If every Cauchy sequence
is convergent in (X, d) then (X, d) is called a complete complexvalued metric space.
We require the follwing lemmas.

The following lemmas are very useful for further discussion.

Lemma 1.2. ([1)) Let (X, d) be a complex valued metric space and let {x,} be a sequence
in X.Then {x,} converges to x if and only if |d(x,,z)] — 0 as n — oc.
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Lemma 1.3. ([1]) Let (X, d) be a complex valued metric space and let {x,} be a sequence
in X.Then {z,} is a Cauchy sequence if and only if |d(z, , yim)| — 0 as n,m — oc.

Now we follow the notations and definitions given in [7].
Let (X, d) be a complex valued metric space. We denote
s(z)) ={2 € C:2 3 2} for z € C'and
s(a, B) = U s(d(a,b)) = U {z € C:d(a,b) 2z} fora € X and B € C(X).
beB beB
For A, B € C(X), we denote

s(A, B) = ( N s(a,B)) N (m s(b, A)).

acA beB

Remark 1.4. ([7]) Let (X, d) be a complex valued metric space and let CB(X) be a col-
lection of nonempty closed subsets of X. Let 7' : X — C'B(X) be a multivaluedmap.For
z € X and A € CB(X),

define W, (A) = {d(z,a) : a € A}.

Thus , for z,y € X. W,(Ty) = {d(z,u) : uw € Ty}.

Definition 1.5. ([7]) Let (X, d) be a complex valued metric space.A nonempty subset
A of X is called bounded from below if there exists some =z € C such that z = a for all
a€ A

Definition 1.6. ([7]) Let (X, d) be a complex valued metric space. A multivalued map-
ping F : X — 2¢ is called bounded from below if for each = € X there exists z, € C
such that z, 2w forall u € Fx.

~

Definition 1.7. ([7]) Let (X,d) be a complex valued metric space.The multivalued
mapping 7' : X — CB(X) is said to have the lower bound proerty (1.b.Property) on
(X, d) if the for any = € X, the multi-valued mapping F, : X — 2¢ defined by F,(y) =
W..(Ty) is bounded from below.That is for z,y € X there exists an element [.(Ty) € C
such that [, (Ty) 3 u, for all u € W, (Ty), where [,(Ty) is called a lower bound of T
associated with (x,y).

Definition 1.8. ([7]) Let (X,d) be a complex valued metric space.The multivalued
mapping 7 : X — C'B(X) is said to have the gretest lower bound proerty
(g.1.b.Property) on (X, d) if the gretest lower bound of W,,(Ty) exists in C forall 2,y € X.
We denote d(z, T'y) by the g.l.b.Property of W, (Ty). That is d(z, Ty) = inf{d(z,u) : u €
Ty}.

Definition 1.9. ([20]) Let f : X — X, S : X — CB(X).f is said to be S-weakly com-
muting at » € X if f?2 € Sfa.
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2. MaiN ResuLrrs

Theorem 2.1. Let (X, d) be a complex valued metric space.
Let S,T : X — CB(X) be multi valued mappings f,g9: X — X satisfying
(2.1.1)Sz C g(X), Tz C f(X)Vz e X

) cd(fx,Ty)d(gy,Sz
(2.1.2)ad(fz, Ty) + bd(gy, &)er € s(Sz, Ty)

forall z,y € X and a, b, c are non negative reals such that 2a + 2b < 1,

(2.1.3)f is S weakly commuting and g is T weakly commuting,
(2.1.4) f(X) is complete.

Then (1,S) and (g,T) have the same coincidence point.

Proof. Let 1 be an arbitrary point in X. Write y; = fz;.Since Sx; C ¢g(X), there exists
x9 € X such that y = gy € Sz

From (2.1.2) ,we have

ad(fx,, Txs) + bd(gx,, S:r:ﬁ-k%ﬁff—w € s(Say, Txy).

ad(fz,, Txs) +bd(gz2,le)-‘r%"d(hl‘T:'JQM(Q'TQ’SJ;‘) € ( N s(a:,TxQ)).

1+d(fzy,9c5) vese,

ad(fz,, Txs) + bd(gx,, le)+%gmijsm € s(x,Txy), Vo € Suy.

ad(fz,, Tzs) + bd(gx,, Sx1)+cafﬁﬁaz—m € s(gze, Txy).

cd(fxy,Tay)d(gry, Sty
ad(fw,, Tws) + bd(ga,, Su) + UL Tl080) ¢ | s (d(gay, @)
x€Txo

Since Tz, C f(X),there exists some x5 € X withy; = fz3 € T'zy suchthat ad(fz,, Txy) + bd(gz,, Sz1)+

€ s (d(gzy, fr3)).
Hence

3 cd(fx,,Txy)d(gx,,Sx
d(g2y, 25) 3 ad(fx,, Tws) + bd(g,, Sy )4 X Tepdlorasn),

cd(yy,y3)d(yq,1
d(y,ys) 3 ad(y,, ys) + bd(yy, yo)+ szl

|d(y2, y3)| < ald(yr,y2)| + a|d(y2, ys)].
[d(y2, y3)| < 1% [d(y1, y2)]. “..on(1)

Now,

. cd(fxs,Txs T, ST
ad(fxy, Txs) + bd(g,, ng)—&—%:gx;ﬂ € s(Sxs, Txs).

1+d(fz,,gz.
(fz3,929) yeTzo

ad(fxy, Txs) +bd(ng,S:L‘g)+—Cd(fz3’T12)d(gz2’sx3). € < N 8(5137];)).
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ad(fxg, Ts) + bd(gx2,5x3)+%ﬁ+w. € s(Sxs,y),Vy € Tas

cd(fxy, Txsy)d(gry,ST
ad(fxy, Txs) + bd(gxz,Sx3)+—(f1ﬂr'd(;;3’(gz§) 3) ¢ s(Sws, fas).

ad(fxg, Txs) + bd(ng,Sx3)+%ﬁ+W S Lg s(d(y, fx3)).
: yeSws

Since Sz3 C g(X),there exists some z, € X with y, = gz4 € Sxssuchthat ad(fx,, Twy) + bd(gx,, Sws)+

€ s(d(gxy, frg)).

Hence

cd(fxy,Txsy)d(gry,ST
d(guy, f25) 3 ad(fay, Tws) + bd(ga,, Suy)+ L ratlonsin),

d(y4,y3)d(Ys,Y4
d(yy,y1) 3 ad(ys, ys) + b (yy, ya) + e,

[d(ys, ya)| < 0ld(ya, ys)| + 0|d(ys, ya)|

s )| < 125 [dv )] )
putting h = max { 1%, 1%; } and we continuing in this way, we get
1Y, Y1) | < 2]y, 90)]|

< W2 |d(Y_g: Yn1)]

< h"Hd(yy, ys)|
Now for m > n consider

‘d(yn,ym)‘ < ‘d(yn,ym) + d(Yyy 1 Ynt2) + oo+ (Y, Ym)
e e e T ‘d(ylyyg)‘

—h
Thus {y,} is a Cauchy sequence in X.

n—1
g[h — 0 as m,n — oo.

Since f(X) is complete , {y2,11} = {f2s,,,} is Cauchy,it follows that {y,.1} converges
to u € f(X).Hence there exists v € X such that u = fv.
Since {y,} is a Cauchy sequence and {ys,.1} — u it follow that {ys,} — w.

cd(fv,Txy,, )d S
ad(fv, Txy,) + bd(gxzn,Sv)—&—% € s(Sv, Txay).

ad(fv,Trﬂgn)+bd(gw2n,5v)+w € ( N s(Suy)).

1+d(fv,gz-
(fv,972,) yETwan

ad(fv, Txan) + bd(ga,,, Sv)+%w € 5(Sv,y), Yy € Txap.

. cd(fv,Txy,)d(gzy, ,Sv
ad(fv, Txa,) + bd(ngH,Sv)-&-%;iz:)) € s(Sv, Yont1)-
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cd(fv,Txy,)d(gzy, ,Sv
ad(fv, Tway,) + bd(gz,,, Sv)-&-% e U s(dul,yans1))-
uteSv

There exists v,, € Sv such that

cd(fv,Txy,)d(gzy, ,Sv .
ad(fv, Txa,) + bd(gz,,, SU)+% €s (d(vm ?42n+1))-

cd(fv,Txy,)d(gz,, ,Sv
Therefore d(vy, ya,11) 5 ad(fv, Twan) + bd(ga,, Sv)+ e lon.50),

Using g.1.b.property, we get

cd(fv,ys, d(y,,,,0n
d(vna y2n+1) j ad(fl), y2n+1) + bd(y2n7 UW)—F%

Using triangular inequality, we obtain

A(f0,Yos1)A(Yoy0n
A0 Yonir) 3 AA(F0, Y1) + DA (Y, Yonn) + bil(ty ., 0) 4 L) ),
a b c di sY2n d(Yg,,,Vn
d(v,, yant1) 3 75d(fv, Yansa) + ﬁd(yzmymﬂ) + 1*b%w
Now consider
d(f’w ’Un) :5: d(f?}, y2n+1) + d(y2n+17 Un)'

d(fv,y2n+1)d(Ys,, 00
3 d(fv, yon1) + 1540, Yons1) + T Yan 1) + 75 Lz t)

|d(f’L)7 vn)‘ < ‘d(fl}, y2n+1)‘ + ﬁ) ‘d(fvv y2n+1)‘ + 1%5 ’d(y2n>y2n+1)‘
qe |d(fv.y2n11)]|d(ys,00)|
1=b 14d(fo.y,,)

. Letting n — oo,

we obtain

|d(fv,v,)] = 0 as n — co.By Lemma 1.2,we have v, — fv as n — oc.
Since Sv is closed and {v,} ©'Sv, it follows that fv € Sv.

Now v = fv € Svand Sv C ¢g(X) it follows that u = fv = gw for some w € X.

ad(fron—1, Tw) + bd(gw, ngn_l)+Cd(fzzf;;gggjf"ﬁff“”) € s(Swap_1,Tw).

A(f 221, Tw)d(gw, S
ad(fxan—1, Tw) + bd(gw, Sxa,—1)+° (f121+;(f52)7.,(?gw;2 =

€ ( N s(yl,Tw)> .

yl€Swan_1

cd(fron—1,Tw)d(gw,ST2n—1)
I+d(foon—1,9w) .

€ s(yt, Tw),Vy* € Sxo,_1.

ad(fron—1, Tw) + bd(gw, Stop—1)+

cd(fron—1,Tw)d(gw,Swan_1)
1+d(fz2n—1,9w)

d, n—1,Tw)d ,ST2n
ad(f‘r?n—lv Tw) + bd(ng Sx?n—1)+c (f121+;(f:2)n7(€1,1;w)12 ) € 1LEJT s (d(me ul))
u w

ad(fron—1, Tw) + bd(gw, Ston_1)+

€ s(yan, Tw).

There exists some w,, € Tw such that

ad(fa-1, Tw) + bd(g, Sy 1)+t Fh00S0001) € 5(d(y, w,)).
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cd(fr2n—1,Tw)d(gw,ST2,—1)
1+d(fran—1,9w) ’

d(yan, wn) 2 ad(fron—1, Tw) + bd(gw, Sxon_1)+
Using g.1.b.property, we obtain

cd(y2n—1,wn)d(gw,y2n
d(y2m wn) i ad(yZ'rL—h wn,) + bd(gw7 yZn)+W
Using triangular inequality, we have

d(y2n—1,wn)d(gw,y2n
d(me wn) é ad(yZn—h yZn) + (Id(me U77L) + bd(gw. y%J‘FW

d(y2n—1,wn)d(gw,y2n
(Yo wn) 3 125 d(Won-1, Yon) + 15 d(gw, yon) + 15 Wropinldlitgen)
Now consider d(gw, w,) 3 d(gw, yon) + d(Ys,,, wy)-

a b ¢ dyan—1,wn)d(gw,y2n
j d(gw, y2n) + Ed(yZn—lv y2n> + ﬁd(ng y?n) + lfa%'
|d(gw7 wn)l S ‘d(ng y2n)| + ﬁ ‘d(yZn—lv yZ'rL)| + % ‘d(gw~ y2n)|
+L|d(:’/2n71~'l“nr)‘|d(g“"=y2n)‘
I—a  [I+d(y2n—1,9w)] *

Letting n — oo we get

|d(gw,w,)] — 0 as n — c0.By Lemma 1.2, we have w,, — gw as n — oo.

Since Tw is closed and {w,} C Tw, it follows that gw € Tw:

We have v = fv = gw € Tw.

Since [ is S-weakly commuting and ¢ is T-weakly commuting we have

f?v e Sfv= fue€ Suand g*w € Tgw = gu € Tu.

Thus the pairs (f,S) and (g, T) have the same coincident point. O
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Abstract In this paper, we obtain a Presic type fixed point theorem for two pairs of jointly
2k-weakly compatible maps in fuzzy metric spaces.We also give an example to illustrate our main
theorem. We obtain two corollaries for three maps and two maps.

Keywords: Fuzzy metric spaces, presic type theorem, jointly 2k-weakly compatible mappings.

1 Introduction and Preliminaries

There are a number of generalizations of Banach contraction principle. One such generalization is given
by S.B.Presic [9] in 1965.
Let f: X* — X, where k > 1 is a positive integer. A point 2* € X is called a fixed point of f if

z* = f(a*,z*, -+ ,2*). Consider the k—order non linear difference equation
Tnpr = f(@noki1, Tnokgo, - xp)forn =k -1,k k+1, (1.1)
with the initial values xg, 1, zo, -+ ,xp_1 € X.

Equation (1.1) can be studied by means of fixed point theory in view of the fact that € X is a
solution of (1.1) if and only if z is a fixed point of f: One of the most important results in this direction
is obtained by Presic [9] in the following way. Throughout this paper,let N denote the set of all positive
integers.

Theorem 1.1. ([9]) Let (X,d) be a complete metric space, k a positive integer and f : X* — X . Suppose
that

k
d(f(z1, 22, o), f(Te, 3, Tp11)) < Z(h d(wi, i)
i=1

k
holds for all x1, 2, &, 241 € X, where ¢; > 0 and > q; € [0,1). Then f has a unique fized point
i=1

x*. Moreover, for any arbitrary points x1,x2,--- ,Tr41 in X, the sequence {x,} defined by xpi1 =
f(@nyTng1, s Tpik—1), for alln € N converges to z*.

Later Ciric and Presic [6] generalized the above theorem as follows.

Theorem 1.2. ([6]). Let (X, d) be a complete metric space, k a positive integer and f : X* — X. Suppose
that

d(f(wy, o, wk), f(r2, 23, ,2pq1)) < Amax{d(z;, zip1) : 1 <i <k}
holds for all 1,29, &k, xpy1 in X, where X € [0,1). Then f has a fized point x* € X. Moreover, for
any arbitrary points x1,xa, - -+ , xRy in X, the sequence {xy,} defined by Tpip = f(Tn, Tpg1, - Tntk—1)s

for allm € N converges to x*. Moreover, if d(f(u,u,--- ,u), f(v,v, -+ ,v)) < d(u,v) holds for all u,v € X
with u # v, then x* is the unique fized point of f.

Recently Rao et al.[4,5] obtained some Presic type theorems for two and three maps in metric spaces.
Now we give the following definition of [4,5].
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Definition 1.3. Let X be a non empty set and T : X** — X and f : X — X.The pair (f,T) is
said to be 2k-weakly compatible if f(T(z,x,...,x,x)) = T(fz, fz,..., fz, fx) whenever x € X such that
fr=T(z,z,.., z,x).

Using this definition, Rao et al. [4] proved the following

Theorem 1.4. ([4]). Let (X,d) be a metric space, k a positive integer and S,T : X?¢ — X, f: X — X
be mappings satisfying:

(1.4.1) d(S(z1, 2, s w2p), T2, 23,y T2p41)) < A nax {d(f@i, frig1)} for allz, xa, -+ Top, Topt1
in X, o

(1.4.2) d(T(y1,y2, - yar)s S(Y2, Y3, -+ s Y2r1)) < A max {d(fyi, fyir1)} for all yi,ya, -+ Yar, Yar+1
in X, where 0 < A <1 o

(1.4.3) d(S(u, -+ ,u),T(v,---,v)) < d(fu, fv), for all u,v € X with u #v

(1.4.4) Suppose that f(X) is complete and either (f,S) or (f,T) is a 2k— weakly compatible pair.

Then there exists a unique point p € X such that fp=p=S(p,---,p) =T (p, -+ ,p).
Recently Murthy and Rashmi [8] defined the following function
Definition 1.5. Let ¢ : [0,1] — [0, 1] be such that:

(i) ¢ is increasing and continuous function in each variable,
(it) ¢(t,t,t,.....t) >t for all t € [0,1].

Using this function,Murthy and Rashmi [8] extended Theorem 1.4 to fuzzy metric spaces as follows.

Theorem 1.6. ([8]) Let (X, M, *)be a fuzzy metric space and S, T : X?* — X, f: X — X be mappings
satisfying for each positive integer k,0 < g < % and t € [0,00):

(1.6.1) M(S(z1,22, .., Tog—1,T2k), T (22, T3,y Tog, Tagy1), qt) > G(M(far, fao,t), -, M(frok, frogs,t))
for all 1, x9,...,xok41 € X,

(1.6.2) M(T(y1,y2s - Y2r—1, Y2k )> S (Y2, Y35 - Y2ks Y2ka1), qt) > G(M (fy1, fya,t), -+, M(fyar, fyar+1,t))
for all y1,y2, ..., yor+1 € X,

(1.6.3) M(S(u,u,...,u,u),T(v,v5,0,0),qt) > M(fu, fv,t)
for all u,v € X with u # u.

Suppose that f(X) is complete and either (f,S) or (f,T) is 2k-weakly compatible pair.
Then there exists a unique p € X such that p= fp= S(p,p,....,p,p) =T (D, D, ..., D, D)-

In this paper, we obtain a Presic type theorem for four mappings satisfying a slight different contractive
condition in fuzzy metric spaces. We also give an example and two corollaries to our main theorem.

First we recall some basic definitions and lemmas which play crucial roles in the theory of fuzzy metric
spaces.

Definition 1.7. (/2]). A binary operation * : [0,1] x [0,1] — [0,1] is a continuous t-norm if it satisfies
the following conditions:

* s associative and commutative,

* 15 continuous,

ax1=a forallac|0,1],

. axb < cxd whenever a < ¢ and b < d, for each a,b,c,d € [0,1].

Lo o~

B

Two typical examples of a continuous t-norm are a * b = ab and a * b = min{a, b}.

Definition 1.8. ([1]). A 3-tuple (X, M, ) is called a fuzzy metric space if X is an arbitrary (non-empty)
set, * is a continuous t-norm and M is a fuzzy set on X? x (0,00), satisfying the following conditions for
each x,y,z € X and t,s > 0,

(My) M(z,y,t) >0,
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(Ms) M(z,y,t) =1 if and only if x =y,

(Ms) M(z,y,t) = M(y,z,t),

(My) M(x,y,t) =« M(y,z,s) < M(z,z,t+s),
(Ms) M(x,y,.):(0,00) — [0,1] is continuous.

Let (X, M, ) be a fuzzy metric space. For ¢ > 0, the open ball B(x,r,t) with center z € X and radius
0 <r < 1isdefined by B(z,r,t) ={y € X : M(z,y,t) >1—r}

If (X, M, ) is a fuzzy metric space, let 7 be the set of all A C X with « € A if and only if there exist
t>0and 0 <r <1 such that B(xz,r,t) C A. Then 7 is a topology on X (induced by the fuzzy metric
M). This topology is Hausdorff and first countable.

A sequence {x,} in X converges to x if and only if M(x,,x,t) — 1 as n — oo, for each t > 0. It is
called a Cauchy sequence in the sense of [7] if nlgr;o M (2, Tpyp,t) = 1, for all ¢ > 0 and each positive

integer p. The fuzzy metric space (X, M, ) is said to be complete if every Cauchy sequence is convergent.
Example 1.9. Let X = [0,1] and axb = ab for all a,b € [0,1] and let M be the fuzzy set on X x X x (0, 00)
defined by M (xz,y,t) = e~

(X, M, %) is a fuzzy metric space.
Lemma 1.10. (/7]). Let (X, M, ) be a fuzzy metric space. Then M (x,y,t) is non-decreasing with respect
tot, forallz,y € X.
Definition 1.11. (/3]). Let (X, M,*) be a fuzzy metric space.Then M is said to be continuous on

2%(0,00) if im M (2, yn,tn) = M(z,y,t), whenever a sequence {(Tn, Yn,tn)} in X?x (0, 00) converges

n—o0
to a point (z,y,t) € X x (0,00).i.e. lim M(zp,2,t) = lim M(yn,y,t) = 1 and lim M(z,y,t,) =
n—oo n—oo n—o0
M(z,y,t).
Lemma 1.12. (/3]). Let (X, M, %) be a fuzzy metric space. Then M is a continuous function on
X% % (0,00).
Now we state the condition (A): tlim M(z,y,t) =1forall z,y € X.
—00

We observed that in the proof of Theorem 1.6, the authors Murthy and Rashmi [8] inherently used
the condition(A).
Now we introduce the definition of jointly 2k-weakly compatible pairs as follows.

Definition 1.13. Let X be a nonempty set,k.a positive integer and S, T : X** — X and f,g: X — X.
The pairs (f,S) and (g,T) are said to be jointly 2k-weakly compatible if

(S a,....x)) = S(fz, fz, ..., fx)
and
9(T(z,,...,x)) = T(gz, g, ..., g)
whenever there exists x € X such that fx = S(z,x,...,x) and gv = T(z,z, ..., x).

Now we give our main theorem.

2 Main Result

Throughout this section assume ¢ as in Definition 1.5

Theorem 2.1. Let (X, M, x) be a fuzzy metric space with the condition (A), k a positive integer and
S, T: X% — X and f,g: X — X be mappings satisfying:
(2.1.1) S(X?*) C g(X), T(X*) C f(X),

Mgy, fyr,t), M(fz2, 9y2.1),

M (g3, fys,t), M(fra, gya, t),
(2.1.2) M(S(w1, w2, T2r), T(Y1, Y2, -5 Y2r), qt) = ¢ .

M (gzak—1, fy2r—1,t), M(fror, gyar,t)
V1, T2, s Tok, Y1, Y2, -0 Y2i € X, VE>0,0< g < 1,
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(2.1.3) (f,S) and (9.T) are jointly 2k-weakly compatible pairs.
(2.1.4) Suppose z = fu = gu for some u € X whenever there exists a sequence
{Yok4n 152 in X such that lzm Yokin =2 € X.

Then z is the unique point in X such that z = fz =gz = S(z,2,...,2,2) =T(z, 2, ..., 2, 2).

Proof. Suppose x1, T, ..., To, are arbitrary points in X. From (2.1.1),we define
Yoktan—1 = S(Toan—1,Tan, s T2ht2n—2) = gT2ktan—1

Yokran = T(T2n, Tan i1, s Togy2n—1) = [Torton
forn=1,2,....
Let g, = M(f2on, gTant1,qt) and ag,—1 = M(gxon_1, fT2,,qt) for n =1,2, ...
Put 0 = 5 and p = mm{@”r 621 Ives 02”“”0‘ } Then 6 > 1.

s’

By the selection of u, we havo

w—om 2
an > <7M+9”> for n=1,2,..,2k (1)
Consider
Qo1 = M(g2opy1, frars2, qt)
= M(S(x1, 22, .., og—1, Tak), T (T2, ¥3, .., Tak, Ta41), qt)
> ¢(M(gxy, fo,t), M(fr2, gr3,t)5y M(f22r, gT2n11,1))
> ¢laq, g, ..., o1, Qo) , since M(x,y,.) and ¢ are increasing
2 o N2 kN 2
=10 n—10 nw—10
> . : from (1
_¢<<u+9> '<u+92> <u+92’“ rom (1
- 6 2 1w — 0% 2 - 6% 2
2¢ g2k ) g2k | 0o H2k
w+ n+ n+
</l/ _p2kN2
> | ———=¢ ] . since ¢ (t,t,...t) >1
u+02’“> '
_p2k41 2
S (P
=\ p+ 621
Thus )
11— 02k+1
Qoky1 = (W (2)
Also

Qapya = M(fror42, 972143, qt)
= M(S(x3, T4, T5,T6, .oy Togt1, Takt2), T (T2, T3, Ty, Ts, ...y Tk, Tog41), L)
> ¢(M(gxs, fra,t), M(fry, gug,t), ..., M(fropt2, 9Toky1,1))
> ¢z, a3, 0, Qs ooy Aok, Ay 1)

- - 02 2 w—03 2 1 — 0% 2 o — 621 2

- pw+02) T\ p+03) 7\ u+02) T\ p+ o2t
u_92k+1 2 N_02k+1 2 u_92k+1 2
w021 ) 0\ g2kt )\ g gk

¢
_ g2k+1 2 = §2k+2 2
> .
m + §2k+1 ot 072

%

%
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Thus ,
- 62k+2 .
Qoky2 2> <m (3)
Continuing in this way,we have
2
w— o
> (B2 ) n=1,23.. 4
Now consider
M (Yar42n—1, Y2k+2n,t) = M (Yakt2n—1, Y2kt2n, qt) , since ¢ < 1and M(z,y,.) is increasing
- M S(Z‘Zn—lﬁx2nyl‘2n+1) '*'1‘2k+2n73«,w2k+2n72)¢
T (T2n, T2nt1, Tant2s - T2kt2n—2, L2k+2n—1) Gt
1\/1(.171’271717 fron, t); A[(.fx%u 9T2n+1, t)s
>0 M(gx2n41, frant2,t), M(fronia, gTonts, t),
M(gx2k+2n-3, [Tort2n-2,1), M(fTort2n-2, 9T2k120-1,1)
> ¢ (Qan—1, ®2n, Q2n41; o Q2 203, Qak+2n—2) , since ¢ and M are increasing
n—1\ 2 m o\ 2 n—2\ 2
> ¢ <H*02 i s i > S po 2 2) from (4)
ot 2t ptom) 1+ f2RF2n—2
- (H _ 92k+2n—2>2 (M _ 02k+2n—2>2 (H _ 92k+27172>2
- I + 02k+2n—2 ’ I + 02k+2n—2 &\ I + 92k+2n—2
o (n= §2k+2n—2 2
= \ i+ 2kF2n—2
o (n- §2k+2n—1 2
AV ENZEETE
Thus
1 — O2+2n=1 2
M (y2i+2n-1, Y2kt2n, t) > <W> (5)
Also

M (yakt2n, Y2ksont1,t) = M (Yakran, Yokrant1,qt), since ¢ < 1 and ¢ is increasing

- M S ($27z+17372n+2-,$2n+3-, ~--7$2k+2n—1-,-7:2k+2n)7
T (%20, Tont15 V2n+2, oo T2kt 2n—25 T2kt 2n—1) 5 G
M(gx2ni1, fron, 1), M(fr2n42, 9T2n41,1),

S 6 M(922n+3, front2,t), M(fronia, gT2n13,1),

M(gzaryon—1, fronron—2,t), M(fTori2n, gTokron—1,1)

> ¢ (Qan, Qant1s e Q2 2n—2, A2k 12n—1)

¢

- 6% 2 o — g2+l 2 o — §2k+2n—1 2 N y
¢ w02 ) T\ A 020 ) 7T 4 92kt rom (4)
> [ — g2+2n—1 2 [ — 221 2 [ — g2+ 2
= o+ 2R Fzn=T | o\ gkt | oo\ gekt el

11— Oh+2n—1
> A —
= (H + g2k+2n—1

_ p2k+2n\ 2
s (= .
=\ + 62k+2n

v

2
) , since ¢(t,t,t,....t) >t
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Thus )
11— 02+2n
M (y2rr2n, Yort2n+1,t) = (W (6)
Hence from (5) and (6)we have
- §2k+n 2
M (Yortns Yoktnt1,t) 2> (7;14» 02“") for n=1,2,.. (7)

Now for n,p € N, we have
t t t
M (Yorsn, Y2rtntps t) = M(Yortn, Yok4nt1, 5) * M (Yok4nt1, Y2ktnt2s ;U) * ook M Yaktnbp1s Yokinip
o §2k+n 2 = p2k+n+1 2 - g2k+n+p—1 2
> o * st ) F e | ey ) o from (7)
'u+9 +n N+9 +n+ N+9 +n+p—
—1sxl*xlx...xlasn — o0
=1

Hence {yaj4n} is a Cauchy sequence in X.
Since X is complete,there exists z € X such that yogi+n — 2z as n — 0.
From(2.1.4),there exists « € X such that
z=fu=gu (8)
Now consider
M (S (uyty oy, 0)  Yort2ns gE) = M (S (U, ooy 1, %) T (T2, T2t 15 05 P20t 2625 T2n42k—1) 5 4F)

M (gu¢ fom t) , M (fu‘ 9Tan+1, t) s
M (gu; franron—2,t) , M (fu, gTorton—1,t)

Letting n — oo and using (8),we get
M(S(u, uzy...,u,w), fu,qt) > ¢(1,1,...,1,1) > 1

which implies that

S(u, e u,u) = fu 9)
Similarly we can prove that
T(u,uy ..., u,u) = gu (10)
Since (f,S) and (g,T') are jointly 2k-weakly compatible pairs, we have
fz=f(fu) = f(S(u,u,..;u)) = S(fu, fu, .., fu) = S(z,2,..., 2) (11)
and also
gz =T(z,2,....2,2) (12)

Now consider

M(fz,z,qt) = M(S(z,z2,...,2,2), T(u,u, ..., u,u), qt), from (11),(8), (10)
M(gz, fu,t), M(fz,gu,t),

min{M(gz,z,t), M(fz,2,t)},
min {M (gz,z,t) , M (fz,2,t)},

min {M (gz,z,t), M (fz,z,t)}
> min{M (gz,2,t),M (fz,2,t)}.
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Thus

M (fz,z,qt) > min{M (gz,z,t) ,M (fz,z,1)}
Similarly,we can show that

M (gz,z,qt) > min {M (z
Thus from (13)and (14),we have

Sz t), M (2,92, t)}

min{M(fz, z,qt), M(gz,z,qt)} > min{M(z, fz,t), M(z,gz,t)}
which inturn yields from condition(A) that
z=fz and z=gz

From (11),(12)and (15),we have

z=fz=92=5(z,2,..,2) =T(2,2,...,2)
Suppose there exists 2 € X such that
J=f =g =S5, ) =T ()
Then from (2.1.2) we have
Mz, qt) = M(S(z,2,....2,2), T(Z, 2, ..., 2/, 2), qt)

M (gz, f2',t), M (f=z, gz t),

M (gz, f2',t) , M (fz,g92',t),
'Ji}'(;),;"}2?"ij"'}ij'k'f;";;; D
=¢(M(z,2',t), M(z, 2, t);.0, M (2,2, t))
> M(z,2,t)

From the condition(A), we have 2’ = z.
Thus z is the unique point in X satisfying (16).

Now we give an example to illustrate our main Theorem 2.1.

Example 2.2. Let X = [0,1],a % b = ab; M(x,y,t) = e and k= 1. Define ¢ :

o(x1,r9) = min{xy, xo}.Let S, T X% = Xand f,g: X — X be defined as S(z,y) =

22+43y° _z
=, fr=% and gz = T' Now for x1,x9,y1,y2 € X,we have

322 +2y

P p 3at +112 2y1+3y3
\5(£1’L2)*T(y1»92)\7| —sar
= \3L172y1+21273y2\
2
< & max{}32? — 201, 22 — 3431}.
Now, we have
_1S(z1,29) =T (y1,¥2)|
/ 1 I Pa——
M(S(z1,22),T(y1,y2). 5t) = € 5 ‘
_ o mex{(3nf -2y | |2ep —3u3 1)
>e 5
max{|303 —2y;|,|209 32|}
B —
TR
e,w
= T
2 2
. 1w z2 Y3
> L il R b il
> min< e -

= min{M(gv1, fy1,t), M(fr2,9y2,1)}
= ¢(M(gxy, fyr, 1), M(f22. gy2, 1)
Thus (2.1.2) is satisfied with q = %.
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[O 1]2 = [0,1] as

T(z,y) =

One can easily verify the remaining conditions of Theorem 2.1. Clearly 0 is the unique point in X satisfying

(16).
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Corollary 2.3. Let (X, M, *) be fuzzy metric space with the condition (A) and S,T : X** — X and
f: X — X be mappings satisfying:

(2.3.1) S(X?*) C f(X),T(X?) C £(X),

(2.3.2) M(S(x1, 22, 220), T(Y1, Y2, s Y2x), qt) 2 ¢ (M (fay, fyr, 1), M(fra, fy2,), - M (fror, fyzm, b))

Va1, o,y oy Tog, Y1, Y2, ooy Yor € X,VE>0 and 0 < g < 1,

(2.3.3) f(X) is a complete subspace of X.

(2.3.4) Either (f,S) or (f,T) is a 2k-weakly compatible pair. Then there exists a unique u € X such that
u= fu=S(uu,. ..,uu)=T(uu,..uuwu).

Corollary 2.4. Let (X, M,*) be a complete fuzzy metric space with the condition(A) and S, T : X?F — X
be mappings satisfying:

(2.4.1) M(S(w1, 22, 228), T(Y1, Y2, s Y2k ) qt) = & (M (21, 91,1) s M (22, y2,1) 5 ooy M (221, Yo, 1))
Va1, oy ooy Lok, Y1, Y2, oy Yo € X,VE>0 and 0 < g < 1.

Then there exists a unique u € X such that w = S(u,u, ...,u) = T (u,u, ..., u).
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UNIQUE COMMON FIXED POINT THEOREM
FOR FOUR MAPS IN
COMPLEX VALUED S— METRIC SPACES

K. P. R. Rao and Md. Mustaq Ali

ABSTRACT. In this paper we obtain a common fixed point theorem for the
two weakly compatible pairs of mappings satisfying a contractive condition in
complex valued S-metric spaces.

1. Introduction

It is a well-known fact that the mathematical results regarding fixed points
of contraction type mappings are very useful for determining the existence and
uniqueness of solutions to various mathematical models. Over the last 40 years,
the theory of fixed points has been developed regarding the results that are related
to finding the fixed points of self-and nonself nonlinear mappings in a metric space.

Several authors proved fixed point results in different types of generalized met-
ric spaces.

Azam et al. [2] introduced the concept of a complex valued metric space and
obtained sufficient conditions for the existence of common fixed points of a pair of
mappings satisfying contractive type conditions. Later several authors proved fixed
and common fixed point theorems in complex valued metric spaces, for example,
refer [1, 2, 3, 5, 13, 9, 11, 12, 14, 15].

Throughout this paper, let C denote the set of all complex numbers.

A Complex number z € C is an ordered pair of real numbers, whose first co-
ordinate is called Re(z) and second co-ordinate is called Im(z). Let 2,2, € C.
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Key words and phrases. Complex valued S— metric space, weakly compatible.
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Define a partial order < on C follows:
21 3 29 if and only if Re(z1) < Re(z2), Im(z1) < Im(22).
Thus z; 3 23 if one of the following holds:
(1) Re(z1) = Re(zz) and Im(z1) = Im(z2),
(2) Re(z1) < Re(zz) and Im(z) = Im(z2),
(3) Re(z1) = Re(zz) and Im(z) < Im(z),
(4) Re(z1) < Re(zz2) and Im(z1) < Im(z2).
Azam [2] defined the complex metric as follows:

DEFINITION 1.1. ([2]) Let X be a non-empty set. A functiond: X x X — C
is called a complex valued metric on X if for all z,y, z € X the following conditions
are satisfied:

(i) 0 2 d(z,y) and d(x,y) = 0 if and only if x = y;

(i) d(z, y) = d(y, z);

(iii) d(z,y) 3 d(r z) +d(z,y).

The pair (X, d) is called a complex valued metric space.

Sedghi et al. [16] introduced the concept of S— metric space as follows.

DEFINITION 1.2. ([16]) Let X be a non-empty set. A S—metric on X is a
function S : X? — [0, 00) that satisfies the following conditions for all z,y, z,a €
X.

(S1) S(z,y,2z) =oif and only if x = y = z,

(82) S(2,9,2) < S(z,,a) + S(y, @)+ S(z, 20).

The pair (X, S) is called an S—metric-space.

Following examples of S—metric space are due to[16].
ExaMmpLE 1.1. 1) Let X =R" and ||.|| a norm on X. Then
S(x,y,2) = llyz — 22| + ||z + y||
is an S—metric space:
2) Let X = R" and .|| a norm on X. Then
S(x,y,2) = v =zl +lly — 2

is an S—metric space.

Later some authors proved fixed point results in S—metric spaces, for example
4, 6, 8, 10, 16].

LEMMA 1.1 ([16]). Let (X,S) be a S—metric space. If there exist {x,} and
{yn} such that

lim x, =x and lzm Yn =Y,
n—oo

then
lim S(xp, T, yn) = S(z,2,9).

n— o0

For {y,} =y the above lemma becomes as follows.
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LEMMA 1.2. Let (X,S) be a S—metric space. If there exists {x,} such that
lim x, = x then lim S(x,xn,y) = S(x,z,y).
—00 n—oo

Nabil et al. [7] introduced the concept of complex valued S— metric space as
follows.

DEFINITION 1.3. ([7]) Let X be a non-empty set. A complex valued S-metric
on X is a function S : X3 — C that satisfies the following conditions, for all
z,y,z,a € X ¢

(i) 03 5(,y,2),

(ii) S(z,y,z) =0if and only if 2 =y = z,

(iil) S(x,y,2) 2 S(z,z,a) +S(y,y,a) + S(z, z,a).

The pair (X, 5) is called a complex valued S-metric space.

EXAMPLE 1.2. Let X = C. Define S : C* — C by:

S(21,22,23) =

[|Re(z1) — Re(z3)| + |Re(z2) — Re(z3)|] +i[[Im(z1) — Im(zs)| + [Im(z2) — Im(23)]].
Then (X, S) is a complex valued S-metric space.

DEFINITION 1.4. ([7]) If (X, S) is called a complex valued S-metric space, then

(1) A sequence {z,,} in X converges to z if and only if for all € such that
0 < e € C, there exists a natural number ng such-that for all n > ng, we
have S(xn,xn, x) < € and we denote this by lim x, = x.

n—eo

(2) A sequence {z,} in X is called a Cauchy sequence if for all e such that
0 < € € C, there exists a natural number ng such that for all n,m > ny,
we have S(xp,, T, Tm) < €.

(3) An S-metric space (X,S9) is said to_be complete if for every Cauchy se-
quence is convergent.

LEMMA 1.3 ([7]). Let (X,S) be a-complex valued S-metric space and {x,} be
a sequence in X. Then {x,} converges to x if and only if |S(xpn,zy, x)| — 0 as
n — 0o.

LEMMA 1.4 ([7]). Let (X,S) be a complex valued S-metric space and {x,} be a
sequence in X. Then {x,} is a Cauchy sequence if and only if |S(zy, Tn, Tpgm)| —
0 asn— 0o and m — oo .

LEMMA 1.5 ([7]). Let (X,S) be a complex valued S-metric space. Then
S(z,x,y) = S(y,y,x) for all z,y € X.

2. Main results

Recently Naval Singh et al. [13] proved the following theorem in complex
valued metric spaces as follows.

THEOREM 2.1. Let (X, d) be a complete complex valued metric space and S, T :
X — X. If there exist mappings X, j1,7,0 : X x X x X — [0,1) such that for all
x,y € X, the following is valid

(a)
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ANT'Sz,y,a) < XNz,y,a) and Nz, STy, a) < Nz,y,a),
W(TSz,y,0) < ple,y,a) and u(z, STy,a) < p(e,y,a),
TSz, y,a) <y(z,y,a) and y(x, STy, a) < y(z,y,a),
0(TSz,y,a) < d(x,y,a) and 6(x, STy, a) < 6(z,y,a);
(b)
d(Sw, Ty) 3 Az, y, a)d(x,y) + pz,y, ) L5590 4 (2, y, o) WZoeeTn)
(e, ) TSR S

(©) A(w,y,a) + (., @) + 1z, y,a) + 0z, y,a) < 1,
then S and T have a unique common fized point.
In this paper we generalize the Theorem (2.1) in complex valued S—metric

spaces for four maps satisfying more general contractive condition. First we prove
a proposition which is needed to prove our main Theorem.

PROPOSITION 2.1. Let (X, S) be a complex valued S-metric space and F, G, f, g :
X — X. Let yo € X and define the sequence {y,} by
Yon+1 = gTan+1 = FTan; Yont2 = fPant2 = Granir-for alln = 0,1,2....
Assume that there exists a mapping Ay : X x X X X — [0,1) such that
(1) M(Fz,y,a) < Mi(fr,y.a) and M (z, Gysa) < Mi(w, gy, a),
(i) A\ (Gz,y,a) < M (gz,y,a) and M\ (z, Fy,a) < M\ (z, fy.a).
fora ll z,y € X and for a fized element a € X and n=0,1,2,... Then

M (Y2ns @) < M (Yo, ¥, @) and A3 Yan11,) < A (@31, a), for alle,y € X

PROOF. Let z,y € X and n =0, 1,2.... Then we have
M (Y2n, ¥, a) = M(Gran_1,y.a) < AM(922n—1,9,a) = ANY2n—1,y,0a) =
A (Faon—2,y,0) £ Mi(fr2n-2,9,a) = Myan—2,y,0) = A\ (Gxan—3,9,a)
S Ai(g220-3,Y:@) = M (Y2n—3, 9. a) -+ = A1 (Yo, Y, a)-
Thus A1 (y2n,y,a) < A1 (%0,y,a).
Similarly we have
A (T, Y2041, 0) = A (2, Fogn, a) <
ALz, fron, a) = M (2, y2n, a) = A1 (7, Gan—1,a)
< M(2, 97201, a) = M (T, Y2n-1,a) = M1 (2, Frop_2,a) < M(@, fr2,-2,0) =
AT, y2n-2,0) - = Mi(z, 91, a).

Thus Ay (2, Y2nt1,a) < M1z, 91,a). g

THEOREM 2.2. Let (X, S) be a complex valued S—metric space and F,G, f, g :
X — X satisfying the conditions .
(2.2.1) GX C fXand FX C gX,
(2.2.2) The pairs (F, f) and (G, g) are weakly compatible ,
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(2.2.3) fX or gX is a complete subspace of X,
(2.2.4) If there exist mappings A1, A2, Az, A1, s, A6, A7 : X x X x X — [0,1) such that
An(Fayy,a) < Ma(fa,y,a); M(Ga,y, a) < Au(gz,y, a) and
Ml Py, 0) < An( £320): A(, Gy ) < M, gy, a), ¥n = 1,2,3.,7,
for all x,y € X and for a fized element a € X,
(2.2.5)

Sz, Fe,Gy) 3 M(fx,gy,a)S(fz, fz,9y) + Xao(f, gy, a)S(fz, fr,Fx)
+A3(fz, 9y,a)S(gy, 9y, Gy)

+Ma(fx, gy, 0)[9(9y, gy, Fo) + S(f, f2, Gy)]

FXs(fw gy, ) (SR )

+Ao(fa, gy, a) (S iasniec )
Y e

for all x,y € X and for a fized element a € X, where
(2.2.6) (A1 4+ A2+ A3 +2X + A5 + X6 + A7) (2,y,a) < L.
Then F,G, f and g have a unique common fized point.

PROOF. Let zp € X be an arbitrary point. We define a-sequence {y,} in X
such that yoni1 = grant1 = Fron and yoni2 = froni0 = Grany,n = 0,1,2, ..
From(2.2.5) we have

S(Yant1,Y2n+1, Yant2) = S(Faon, Fron, Grongy)
3 )\1(.7/27ny2n+17 G)S(yzm Yon, y2n+1) + )\z(y2m Yon+1s G)S(yzm Yon, y2n+1)
+A3(Y2n, Y2n+1, @) S (Y2nt1, Yon+1, Y2n+2)
+Aa (Y20, Y2n+1, @) [S(Y2n+1, Y2nt1.Y2001) + S(Y2ns Y2n, Y2n+2)]
+)\5 (me Yoni1s ll) S(yzn,yzn,yanH)S(yan,yan,yzn+2)
( )

1+S(Y2n Y2n,Y2n+1)
S(W2n+1,Y2n+1,Y2n+1) S (Y2n,Y2n,Y2n41)
1+S(y2n Y2n,Y2n+1)
S(Yan, Y2ns Yon+1)S (Yan, Y2ns Yont2)
+S(Y2n+15Y2n+1,Y2n+2)S (Y2nt 15 Y2n+ 15 Y2n+1)
14+S(y2n,Y2n Y2n+1) S (Y20 +1,Y2n+1,Y2n+1)

+A6(Y2n, Y2n+1,a

+A7(Y2n, Y2n+1, @)

Since S(z,z,z) = 0, we have

|S(92n+17y2n+1-,312n+2)\
< M (Y2n, Y2n+1, @) [S(Y2n, Y2ns Yont1)|
A2 (Y2n, Yon+ 1, @) [S(Yans Yans Yant1)]
+A3(Y2ns Y2nt1, @) [S(Y2n+1: Y2nt1, Yont2)|
A1 (Y2n, Yon+1, @) [S(Y2ns Yans Yant1)]
+/\4(y2n,y2n+1,a) (Y241, Y2n+1, Y2n+2)|
As( )1S(
( a)|S(

t/;t/;(/;

S(Y2n Y2n,Y2n+1)
Yant1 Y2nt1, Yant2)| ‘m

S

Yons Yon+1, @

Y2n,Y2n,Y2nt2)

+A7(Y2ns Y2nt1, @) [S(Y2an, Yon, Yanta \’m
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[S(Yan+1; Y2n+1, Y2n+2)|
< (A1 + A2+ Ad+ A7) (Y20, Y2n+1, @) [S(Y2n, Y2n, Yont1)]
F(A3 4 Aa 4 A5) (Y2n, Yan+1, @) [S(Y2nt1, Yan+1, Yont2)| -

Using Proposition (2.1), we get
[S(y2n+1,Y2n11, Y2nt2)| < (A1 4 A2+ Aa + A7) (Yo, y1, @) [S (Y2n, Y2n, Y2nt1)|
+(As + A1+ As5) (Yo, 1, @) [S(Yant1, Y2n+1, Yan+2)|
which in turn implies that

A1+ A2+As+A W1
IS (W2n+1, Y2n+1, Y2n+2)| < (%) IS (W2n, y2n, Y2n+1)| -

[ QAo+ Aa+A7) (o,y1,a)
Let hy = ( T=(A3+A1+A35)(yo.y1,a) ) - Thus

[S(y2n+15 Yont1, Yont2)| < ha [S(Y2n, Yon, Y2ntr1)| - oo 1)

Similarly using S(z,y,y) = S(z,z,y) and proceeding as above we can show
that

—~
D
-

[S(Y2nt2: Yont2: Yont3)| < ho |S(Yon+1,Y2n+1, Yont2)
_{ QGaFAs A+ A) Wo,u1,0)
where hy = (W)

Let h = max{hy, ho}, then 0 < h <1, since hy, he € [0,1). Hence from (1) and
(2), we have [S(Yn, Yn, Yn+1)| < P|SWai1sYn—1,yn)|, 7 = 1,2,3,... Repeated use
of above inequality gives

1S Wkes Yes Yrr) 1< RE 1S (o, w0, y1)| v (3)
=0 as k—00 .. (4)

Hence for any m > n,we have

IS, Yns Yna )| + | SWryy1s Yns1, Ynga) | +
S, s Yns ¥ =2 n? o n+1 ’
‘ (Jn Yn Jm)‘ ~--+|S(ym717ymflvym)‘

= 2(B" " DY) [S (Y, yo, )| from (3)

< 2518y, yor 1)l

and
21"
2 18000, 0, 0)| = 0 25 oo
Hence {y,} is a Cauchy sequence in X.

Now suppose fX is a complete subspace of X. Since yoni2 = frany2 € f(X)
and {y,} is a Cauchy sequence, there exists z € f(X) such that yo,42 — 2 as
n — co. Then there exists u € X such that fu = z. Thus

[SWns Y ym)| <

lim Frg, = lim gron1 = lim Gronpr = lim fro, 0 = 2.
n—o0 n—oo n—0o0 n—oo
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Consider
S(Fu, Fu, Gtan+1)
Z A (fus y2ns1, @) S(fu, fu, yantr)
+/\2(fu Yon+1,a)S(fu, fu, Fu)
+/\d(fuay2n+l a)S(Y2n+1, Y2n+1, Yont2)
FA ([t Y211, @) [S(Y2nt1, Yont1, Fu) + S(fu, fu,yonyo)]
( > S(fu,fu,Fu)S(y2n+1,Y2n+1,Y2n+2)
a)
S

+A5(fu, y2n+1,a TFS(Juf o s1)

SWant1.y2n 1. Fu) S(fu.fu.yonio)
+A6(fU; Y2nt1,a T+ S(Jufiyonsy)
(fu,fu, Fu)S(fu,fu,y2ni2)+S(Y2nt1,Y2n+1,Y2n42)S (Y2nt1,Y2n+1,Fu)
+)\7(fu Yont1s a) ( 1+S(fu, fuy2nt2) +S(Y2nt1.Y2n+1,Fu)

|[S(Fu, Fu,Gra,q1)|
<M (fusyonst,a)|S(fu, fu,yonst)]
+A2(fu, y2ni1,a)|S(fu, fu, Fu)|

+/\s(fu‘ Yont1, O)|S (Yant1, Yoan+1, Yant2)]
A (fu, y2nt1, 1S (Y2nt1, Yont1, Fu) + S(fu, fu, y2ni2)]
|S(fu fu, Fu)||S(Y2n+1:Y2n+1:Y2n42)|
+A5(fu, yans1,a) \1+s(fu1;u§2nil;r|l 2t
[S(W2n+1,y2n41,F0)|[S(fu, fu,y2nia)|
Jr/\o(f’u‘ Yon+1, a) 2 +1\11§(1fu,fu,y2,,,+1)| 2ntl

[S(fu, fu, Fu)||S(fu., fu, y2ni2)|

HS(Y2ns1, Y2nt1, Yant2) IS Want1, Yani1, Fu)
HA7(fu, yans, @) [1+S5(fu, fu,yznt1) +SWant1,y2nt1, Fu)]

Letting n — oo and using Lemma 1.2 and 1.5;)we get

|S(Fu, Fu,z)| < Xa(2,2,a) |S(z2, Fu)| + Ma(z, 2,a) |S(z, 2, Fu)|
from(4), Lemma 1.3 (1 — (A2 + \1)(2:2y0)) |S(2, 2z, Fu)| < 0 which in turn yields
from(2.2.6) that |S(Fu, Fu,z)| < 0..Therefore |S(Fu, Fu, z)| = 0. Hence Fu = z.
Thus fu = Fu = z. Since FX C gX, there exists v € X such that F'u = gv. Thus
fu= Fu=gv =z Again from(2.2.5), we have

|S(z,z,Gv)| = |S(Fu, Fu, Gv)|
< Mi(fu, gv, a)[S(fu, fu, go)| + A2 (fu, gv, @)[S(fu, fu, Fu)|
+A3(fu, gv, a)|S(gv, gv, Gv)|
+A4(fu gv,a)|S(gv, gv, F'u) + S(fu, fu, Gv)|
[S(fu,fu, Fu)||S(gv,gv,Gv)|
As(fu, g, a) “\113(1}u,ff;zgr -
S(gv,gv,Fu)||S(fu, fu,Gv)|
+26(fu, go, @) (1l S LG
IS(fu,fu, Fu)||S(fu, fu,Gv) [ +]S(gv,9v,Gv)||S (gv,gv,Fu)|
+A7(fu, gv, a) 450 Fu G+ Saogo )l )
so that

[S(2,2,Gv)| < A3(2,2,a) [S(2, 2, Gv)| + Au(2, z,a) |S(z, 2, Gv)|.
(1= (A3 + A)(2,2,0)) |S(2,2,Gv)| < O
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which in turn yields from(2.2.6) that |S(z, z, Gv)| < 0. Therefore |S(z,z, Gv)| =
Hence Gv = z. Thus

Gv=z= fu=Fu=gv. ... (5)
Since (F, f) is weakly compatible, we have

fz=fFu=Ffu=Fz. ...... (6)

S(Fz,Fz,z) = S(Fz, Fz,Gv)
S M(fz9v,0)5(fz f2,90) + Aa(fz,9v,0)S(fz, f2, Fz2)

+A3(f2, 9v,a)5(gv, gv, Gv)
+)\4(fz,gv a)[S(gv, gv, Fz) + S(fz, fz,Gv)]
As(fz, gv,a) %W
+)\a(fz,gv a) %Sf(zfzcxbv)
A7 (fz, gv,a) (SU=L2 1-zl)+(sﬁzf;zcé)$f(sq(;:ZLG;)E(!,Ug”z)

= N(Fz,2,a0)S(Fz,Fz,2)+ M(Fz,z,a)[S(z, 2, Fz) + S(Fz, Fz, z)|
+X6(Fz,2,a) (%) from(5)and (6)

[S(Fz, Fz,2)| < M(Fz, 2,a) |S(Fz, F4, 2)]
+Mi(Fz,2,a)|S(2,2,Fz) + S(Fz Fz z)|
+A6(F,2,0) JS(3 %, F2)| | 25

T+S(FzFz2) |-
(I = (M 42X+ X)(Fz,2,0)) |S(Fz, Fz2)] <0
which in turn yields from (2.2.6) that |S(Fz, Fz,z)| < 0. Therefore |S(Fz, Fz,2)| =
0. Hence Fz = z. Thus

2<Fz=fz. ... (7)
Since the pair (G, g) is weakly compatible, we have
gz = gGv = Ggv = Gz. ...... (8)
From (2.2.5)
S(z,2,Gz) = S(Fz, Fz,Gz)

M(fz,92,0)S(fz, fz,92) + A2(fz,92,0)S(fz, f2, F2)
+)\3 (fz,92,a)S(9z,92,G=)
+Ai(fz,92,a)[S(g2, 92, FZ )+ S(fz, fz,Gz)]
S FZ)S( G
FAs(f2, 92, a) (BB pfA80m02C2)
S( Fz)S(fz.f2.Gz)
+As(f2,92,a) gzlgis(j‘z Toen
S(fz.f2,F2)S(fz,f2Gz)+5( Gz)S( Fz)
+r(f2, 97, a) (SUBLEYS oGS pm0n G S onn ) )

|S(z,2,Gz)| < M(2,Gz,a)|S(z, z,Gz)|
+A4(z, Gz a) |S(Gz,Gz z)+ S(z, 2, Gz)|

Xo(z, Gz, a) |S(Gz, Gz, )| ‘ §(z.2.G2)

TrsGace from (7), (8)
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(I = (M 4 2X\s + X6)(2,Gz,a)) |S(z, 2,G=z)| < 0 which in turn yields from (2.2.6)
that |S(z, z, Gz)| < 0. Therefore |S(z,z,Gz)| = 0. Hence Gz = z, so that

Gz =gz =2 ccecrvrnn. (9)

Thus from (7) and (9), z is a common fixed point of F, G, f and g. For uniqueness,
let z* € X be such that fz* = Fz* = 2* = gz* = Gz*.
Now from (2.2.5)
S(z,2,2%) = S(Fz,Fz,Gz*)
Sz, gz*a a)S(fz, fz,92%) + Xa(fz,92*,a)S(fz, f2, Fz)
+A3(fz,92%,a)S(gz", gz*,Gz*)
+\a(fz,92%,a)[S(g2%, g2%, Fz) + S(f2, f2,G2")]
s(fzr g2t a S(fz,f2,Fz)S(gz" 9% ,G2")
¢
(

1+5(fz,fz,92%)
e 592" 92" F2)S(f2.f2.G")
+A7(fz,92%,a

)
)
fz,92",0) ERy N Er)
) S(fz,fz.Fz)S(fz,fz,Gz*)+S(gz*,gz",Gz*)S(gz*,gz*,Fz))
14+5(fz,f2,Gz*)+S(gz* ,92* ,Fz) .
[S(z,2,2%)| < Ai(z,2%,a) [S(z, 2, 2%)| + M\a(z, 2%, a) |S(2*, 2%, 2) + S(z, 2, 2*)|

+X6(z, 2%,a) |S(z*, z* Z“Hszziz;z))

[S(z,2,2%)] < (A1 42X+ Xo) (2, 2%,a) |S(2, 2, 2%)|.

(T= (A1 42X+ X6)(2,2%,a)) |S(2, 2, 2*)| < 0 which in turn yields from (2.2.6) that
|S(z,2,2%)| < 0. Therfore |S(z,z,2*)| = 0. Thus z = 2*,

Hence z is the unique common fixed point of F, G, f and g. Similarly we can prove
the theorem if gX is a complete subspace of X« O

Now wegive an example to illustrate our-main Theorem 2.2.

EXAMPLE 2.1. Let X = [0,1] and .S": X x X x X — C be defined by S(z,y, z) =
|& — z| 4+ iy — z|. Then (X, S) is a complex valued S— metric space. Define F, G, f
and g: X — X by Fo = {5, Gz = 5, fr = § and gz = 3, for all z € X. For fixed
element a = %, define A, A2, A35A4, A5, dg, A7 0 X X X x X — [O, 1] by

M(@,y,a) = (35 + 55 +a), Ae(x, y,0) = 55, As3(2,y,a) = (z,y,a) =
’l"}’laa ’I‘3 ’I3 113 ’I‘QTGE .7778(12
o As(@,y,a) = %,Ae(x,y, a) =5 ’M(l y,a ) = %5,
f01 all z,y € X. Then
M(z,y, a)+ Ao (z, y, a)+>\ggx Y, a )+2)\4($ Y, a)j:/\53(x,3y,a);r/\g(z,y,g);r)q(x, y,a)
(?Jr +a)+.l_yu.+1f0a +2(zyu>+zl;+111;0+a 4 Zya 4 mba
(EZ )+30+90+270+z70+1300+%

= 5400
Hence ()\1 + A2+ A3+ 204 + A5 4+ X6 + A7) (@, y,a) < 1. We have

xr
M(F2,9,0) = M(~z,9,0) = (s + 2 +a)

16 640 50
x Y
M(fz,y,a )—/\1( ,Y,a) = (ﬁ+%+a).
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Clearly A\ (Fz,y,a) < Ai(fz,y,a). We have

)\1(:107Fy,a):/\1(90,£7a) ( +7+)

16 40 800
= Yay=(r, Y%
Al(x’fy)“)—/\l(z%:a) (40+200+a).

Clearly M\ (z, Fy,a) < M (x, fy,a). We have
(G, a) = M(35500) = (465 + o +a)

480 50
Mg, =) = (L )
109%,Y,a) = A1 3,y.,a = (55t 50 a).
Clearly A\ (Gz,y,a) < Ai(gz,y,a). We have
= Y =LY
(@, Gy,a) = Mi(w, 15,0) = (55 + 505+ )
e L) = (L
iz, gy, a) = \i(z, 3,(1) (40 + 50 +a).

Clearly A\ (z, Gy, a) < \i(z,gy,a).
Similarly we can prove that
M(Fr,y,a) < A\ (fz,y,a), \o(z, Fy,a) < A\, (z, fy,a)
(G, y,a) < M (92,y,a), \p (2, Gy, a) < M\, gy, a)Vn = 2,3,4,..7.
Consider
|S(Fz, Fz,Gy)| = |S 150 16 %)|
= I - 1+l - 1= 105 - 41630 - 2]
<35 - ¥ +ilz - 2
<5k + 1% + DUF — 51 +il5 = 50 = M (fa, 9y, 0)S(fa, fa, gy)
< M(f2 gy a)S(fr, fa, gy)+ Ao(fr, gy, a)S(fa, fo, Fx)
+A3(fz, gy, a)S(g9y, 9y, Gy) + Aa(fx, gy, a)[S(gy, gy, Fx) + S(f, fz,Gy)]
e g, (Wit
+X6(f2, gy, a) S(gy,iqj:é“(?f;ifqi; .Gy)

S Fz)S Gy)+S Gy)S LF
ol gy (LR et ).

Thus (2.2.5) is satisfied.
One can easily verify the remaining conditions of Theorem 2.2. Clearly = 0
is the unique common fixed point of F, G, f and g.
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