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CHAPTER-1

INTRODUCTION AND PRELIMINARIES

In recent times the study of fixed point theory has been gained an important

role because of its wide applications in proving the existence and uniqueness of

solutions of differential, integral, integro - differential and impulsive differential

equations and in obtaining solutions of optimization problems, in Approxima-

tion theory and Non-linear Analysis. Further many fixed point theorems are

used not only in various mathematical investigations but also problems in

economics, game and computer theory.

In this chapter, we mention some known definitions, propositions and some

main theorems in fixed point theory that are relevant to the content of this

thesis.

Throughout this thesis, we denote R as the set of all real numbers, R+ as

the set of all non - negative real numbers, N as the set of all natural numbers

and C as the set of all complex numbers.

Suppose that X is a non-empty set and T : X → X is a self map on X. If

there is an element x ∈ X such that Tx = x, then x is called a fixed point of

T in X.

Section 1.1 : BANACH FIXED POINT THEOREM FOR SELF

MAPS

The fundamental work in fixed point theory is due to Banach (1922), which

is famous as “ Banach Contraction Principle ”.

Theorem 1.1.1.(Banach Contraction Principle, [81]): Let (X, d) be a com-



plete metric space and T be a self map on X and 0 ≤ k < 1 such that

d(Tx, Ty) ≤ kd(x, y), ∀ x, y ∈ X.

Then T has a unique fixed point in X. Further for any x0 ∈ X, the sequence

of iterates {T nx0} is Cauchy and its limit is the unique fixed point of T .

Definition 1.1.2. Let X be a non-empty set and T1, T2 : X → X be given

self maps on X.

1. If T1x = T2x for some x ∈ X, then x is called a coincidence point of T1

and T2.

2. If x = T1x = T2x for some x ∈ X, then x is called a common fixed point

of T1 and T2.

3. (Jungck and Rhoades,[31]). If T1T2x = T2T1x whenever there exists

x ∈ X such that T1x = T2x, then the pair (T1, T2) is said to be weakly

compatible.

Now we give the basic definition of a partially ordered set as follows:

Definition 1.1.3. A partially ordered set is a set X and a binary relation

� denoted by (X,�) such that, ∀ a, b, c ∈ X
1. a � a (reflexivity),

2. a � b and b � a implies a = b (anti - symmetry) and

3. a � b and b � c implies a � c (transitivity).

Definition 1.1.4. Let (X,�) be a partially ordered set and x, y ∈ X. We

say that x is comparable to y if either x � y or y � x.
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Section 1.2: G - METRIC SPACES

Dhage et al.[10,11,12,13] introduced the concept of D-metric spaces as

generalization of ordinary metric functions and went on to present several

fixed point results for single and multivalued mappings. Mustafa and Sims

[113] and Naidu et al. [93, 94, 95] demonstrated that most of the claims con-

cerning the fundamental topological structure of D-metric space are incorrect.

Alternatively, Mustafa and Sims [113] introduced more appropriate notion of

generalized metric space or a G - metric space and obtained robust topolog-

ical structure for this space. Later Zead Mustafa, Hamed Obiedat and Fadi

Awawdeh [116], Mustafa, Shatanawi and Bataineh [117], Mustafa and Sims

[114], Shatanawi [107] and Renu Chugh, Tamanna Kadian, Anju Rani and

B.E.Rhoades [21] obtained some fixed point theorems for a single map in G-

metric spaces.

Definition 1.2.1(Mustafa et al.[113]): Let X be a nonempty set and let

G : X ×X ×X → R+ be a function satisfying the following properties:

(G1) : G(x, y, z) = 0 if x = y = z,

(G2) : 0 < G(x, y, z) for all x, y ∈ X with x �= y,

(G3) : G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y �= z,

(G4) : G(x, y, z) = G(x, z, y) = G(y, z, x) = .......... symmetry in all three vari-

ables,

(G5) : G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then the function G is called a generalized metric or a G-metric

on X and the pair (X,G) is called a G-metric space.
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Clearly these properties are satisfied when G(x, y, z) is the perimeter of the

triangle at x, y and z in R2, further taking a in the interior of the triangle

shows that (G5) is best possible.

Definition 1.2.2 (Mustafa et al.[113]): Let (X,G) be a G-metric space in

X. A point x ∈ X is said to be limit of {xn} iff lim
n,m→∞

G(x, xn, xm) = 0. In

this case the sequence {xn} is said to be G-convergent to x.

Definition1.2.3 (Mustafa et al.[113]): Let (X,G) be a G-metric space and

{xn} be a sequence in X. {xn} is called G-Cauchy if and only if

lim
l,n,m→∞

G(xl, xn, xm) = 0.

(X,G) is called G− complete if every G-Cauchy sequence in (X,G) is G-

convergent in (X,G).

Proposition 1.2.4(Mustafa et al.[113]): In a G-metric space (X,G), the

following are equivalent.

1 The sequence {xn} is G−Cauchy.

2 For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for all

n,m ≥ N .

Proposition 1.2.5(Mustafa et al.[113]): Let (X,G) be a G-metric spce.

Then the function G(x, y, z) is jointly continuous in all three of its variables.

Proposition 1.2.6(Mustafa et al.[113]): Let (X,G) be a G-metric space.

Then for any x, y, z, a ∈ X, it follows that

(i) if G(x, y, z) = 0 then x = y = z,

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),

(iii) G(x, y, y) ≤ 2 G(x, x, y),
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(iv) G(x, y, z) ≤ 2
3

[G(x, a, a) +G(y, a, a) +G(z, a, a)].

Proposition 1.2.7 (Mustafa et al.[113]): Let (X,G) be a G-metric spce.

Then for a sequence {xn} ⊆ X and a point x ∈ X, the following are equivalent.

(i) {xn} is G-convergent to x,

(ii) G(xn, xn, x)→ 0 as n→∞,

(iii) G(xn, x, x)→ 0 as n→∞,

(iv) G(xm, xn, x)→ 0 as m,n→∞.

Section 1.3 : PRESIC TYPE FIXED POINT THEOREMS

There are a number of generalizations of Banach contraction principle for

multivalued mappings and hybrid pair of mappings for example

(refer[9, 14, 32, 35, 44, 50, 105, 106]).

One such generalization is given by S.B.Presic [84] in 1965.

Let f : Xk → X, where k ≥ 1 is a positive integer. A point x∗ ∈ X is

called a fixed point of f if x∗ = f(x∗, x∗, ...x∗). Consider the k-order non linear

difference equation.

xn+1 = f(xn−k+1, xn−k+2, ...xk−1) for n = k − 1, k, k + 1. (A)

Equation (A) can be studied by means of fixed point theory in view of the fact

that x ∈ X is a solution of (A) if and only if x is a fixed point of f . One of

the most important result in this direction is obtained by Presic [84] in the

following way.

Theorem 1.3.1 (Presic et al.[84]): Let (X, d) be a complete metric space, k

be a positive integer and f : Xk → X be a mapping satisfying
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(1.2.1.1) d(f(x1, x2, · · · , xk), f(x2, x3, · · · , xk+1)) ≤
k∑

i=1

qid(xi, xi+1)

for all x1, x2, · · · , xk, xk+1 ∈ X, where qi ≥ 0 and
k∑

i=1

qi < 1. Then there exists

a unique point x ∈ X such that f(x, x, ...., x) = x. Moreover, if x1, x2, · · · , xk

are arbitrary points in X and for n ∈ N, xn+k = f(xn, xn+1, · · · , xn+k−1), then

the sequence {xn} is convergent and lim
n→∞

xn = f(limxn, limxn, ....limxn).

Later Ciric and Presic [51] generalized the above theorem as follows.

Theorem 1.3.2 (Ciric and Presic[51]): Let (X, d) be a complete metric space,

k a positive integer and f : Xk → X be a mapping satisfying

d(f(x1, x2, · · · , xk), f(x2, x3, · · · , xk+1)) ≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ k}
for all x1, x2, · · · , xk, xk+1 in X and λ ∈ [0, 1). Then there exists a point x ∈ X
such that x = f(x, x, ...., x).

Moreover, if x1, x2, · · · , xk are arbitrary points in X and for n ∈ N,

xn+k = T (xn, xn+1, · · · , xn+k−1), then the sequence {xn} is convergent and

lim
n→∞

xn = f(limxn, limxn, ....limxn). If in addition, we suppose that on diag-

onal Δ ⊂ Xk, d(f(u, u, ..., u), f(v, v, ..., v)) < d(u, v) holds for u, v ∈ X with

u �= v, then x is the unique fixed point satisfying x = f(x, x, ..., x).

Recently Rao et al. [42, 45] obtained some Presic fixed point theorems for two

and three maps in metric spaces. Now we give the following definition of Rao

et al.[42]

Definition 1.3.3(Rao et al.[42]): Let X be a nonempty set, k a positive inte-

ger and T : X2k → X and f : X → X. The pair (f, T ) is said to be 2k-weakly

compatible if f(T (x, x, ..., x)) = T (fx, fx, ..., fx) whenever there exists x ∈ X
such that fx = T (x, x, ..., x).

Using this definition, Rao et al.[42], proved the following theorem.
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Theorem 1.3.4(Rao et al.[42]): Let (X, d) be a metric space and k be any

positive integer. Let S, T : X2k −→ X and f : X −→ X be mappings satisfy-

ing

(1.3.4.1) d

⎛
⎜⎝ S(x1, x2, ..., x2k),

T (x2, x3, ..., x2k+1)

⎞
⎟⎠ ≤ λmax {d(fxi, fxi+1) : 1 ≤ i ≤ 2k}

∀ x1, x2, ..., x2k, x2k+1 ∈ X,where 0 ≤ λ < 1.

(1.3.4.2) d

⎛
⎜⎝ S(y1, y2, ..., y2k),

T (y2, y3, ..., y2k+1)

⎞
⎟⎠ ≤ λmax {d(fyi, fyi+1) : 1 ≤ i ≤ 2k}

∀ y1, y2, ..., y2k, y2k+1 ∈ X,where 0 ≤ λ < 1.

(1.3.4.3) d(S(u, u, ..., u), T (v, v, ..., v)) < d(fu, fv) ∀ u, v ∈ X with u �= v.

(1.3.4.4) Suppose that f(X) is complete and either (f, S) or (f, T ) is 2k-weakly

compatible pair.

Then there exists a unique point p ∈ X such that p = fp = S(p, p, .., p, p) =

T (p, p, .., p, p).

Section 1.4 : COUPLED FIXED POINTS

Bhaskar and Lakshmikantham [101] introduced the concept of coupled fixed

points and Lakshmikantham and Ciric [104] defined the common coupled fixed

points. Abbas et al. [55] introduced the w-compatible mapping and proved

some common coupled fixed point theorems in Cone metric spaces. Later sev-

eral authors obtained coupled fixed and common coupled fixed point theorems

in various spaces, (see for example [46,55,58,101,104]).

Definition 1.4.1(Bhaskar et al.[101]): Let X be a non-empty set. An element

(x, y) ∈ X ×X is called a coupled fixed point of a mapping F : X ×X → X

if F (x, y) = x and F (y, x) = y.
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Definition 1.4.2([Lakshmikantham et al.104]): LetX be a non-empty set.

(i) An element (x, y) ∈ X ×X is called coupled coincidence point of map-

pings F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

(ii) An element (x, y) ∈ X × X is called common coupled fixed point of

mappings F : X × X → X and g : X → X if F (x, y) = g(x) = x and

F (y, x) = g(y) = y.

Definition 1.4.3(Abbas et al.[55]): Let X be a non-empty set. Let

S : X ×X → X and f : X → X be mappings. Then the pair (S, f) is called

w - compatible if f(S(x, y)) = S(fx, fy) and f(S(y, x)) = S(fx, fy) whenever

there exist x, y ∈ X with f(x) = S(x, y) and f(y) = S(y, x).

Section 1.5: FUZZY METRIC SPACES

The concept of fuzzy sets was introduced initially by L.Zadeh in 1965 [49].

George and Verramani[8] modified the concept of fuzzy topological spaces

induced by fuzzy metric introduced by Grabeic[64] and proved the contrac-

tion principle in the settings of fuzzy metric spaces. Many authors(see for

example[8, 40, 76, 84, 96]) have proved fixed and common fixed point theorems

in fuzzy metric spaces.

Definition 1.5.1(Schweizer et al.[15]): A binary operation ∗ : [0, 1] ×
[0, 1] −→ [0, 1] is a continuous t-norm if it satisfies the following conditions:

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. a ∗ 1 = a for all a ∈ [0, 1],

8



4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a∗b = ab and a∗b = min{a, b}.
Definition 1.5.2(George et al.[8]): A 3-tuple (X,M, ∗) is called a fuzzy metric

space if X is an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a

fuzzy set on X2×(0,∞), satisfying the following conditions for each x, y, z ∈ X
and t, s > 0,

(M1) M(x, y, t) > 0,

(M2) M(x, y, t) = 1 if and only if x = y,

(M3) M(x, y, t) = M(y, x, t),

(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

(M5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t)

with center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
If (X,M, ∗) is a fuzzy metric space, let τ be the set of all A ⊂ X with

x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.

Then τ is a topology on X (induced by the fuzzy metric M). This topology

is Hausdorff and first countable. A sequence {xn} in X converges to x if and

only if M(xn, x, t) → 1 as n → ∞, for each t > 0. It is called a Cauchy

sequence in the sense of [8] if lim
n→∞

M(xn, xn+p, t) = 1, for all t > 0 and each

positive integer p. The fuzzy metric space (X,M, ∗) is said to be complete if

every Cauchy sequence is convergent.

Example 1.5.3. Let X = [0, 1] and a ∗ b = ab for all a, b ∈ [0, 1] and let M

9



be the fuzzy set on X ×X × (0,∞) defined by

M(x, y, t) = e−
|x−y|
t for all t > 0. Then (X,M, ∗) is a fuzzy metric space.

Lemma 1.5.4(Grabiec et al.[62]: Let (X,M, ∗) be a fuzzy metric space.

Then M(x, y, t) is non-decreasing with respect to t, for all x, y ∈ X.

Definition 1.5.5(Lopez et al.[40]): Let (X,M, ∗) be a fuzzy metric space.

Then M is said to be continuous on X2 × (0,∞)

if lim
n→∞

M(xn, yn, tn) = M(x, y, t), whenever a sequence {(xn, yn, tn)} in

X2 × (0,∞) converges to a point (x, y, t) ∈ X2 × (0,∞).

i.e. lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma1.5.6(Lopez et al.[40]): Let (X,M, ∗) be a fuzzy metric space. Then

M is a continuous function on X2 × (0,∞).

Section 1.6 : C∗ - ALGEBRA VALUED FUZZY SOFT METRIC

SPACES

In daily life, the problems in many fields deal with uncertain data and are not

successfully modeled in classical mathematics. There are two types of mathe-

matical tools to deal with uncertainties namely fuzzy set theory introduced by

Zadeh [49] and the theory of soft sets initiated by Molodstov [23] which helps

to solve problems in all areas. In [97] Thangaraj Beaula et al. defined fuzzy

soft metric space in terms of fuzzy soft points and proved some results. On

the other hand many authors proved so many results on fuzzy soft sets and

fuzzy soft metric spaces (see [27, 97, 98, 100]).

In 2006, Ma et al. in [61] introduced a concept of C∗- algebra valued metric

space and established some fixed and coupled fixed point results for mapping
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under contraction conditions in these spaces. for example,

refer(see[18, 33, 82, 99, 111] ).

Recently, R.P.Agarval et al.[79] initiate the concept of C*-algebra valued fuzzy

soft metric spaces and proved some related fixed point results on this space

(refer[17, 79]).

Throughout our discussion, U refers to an initial universe, E the set of all

parameters for U and P (Ũ) the set of all fuzzy set of U . (U,E) means the

universal set U and parameter set E, C̃ refer to C∗-algebra.

The details on C∗-algebras are available in [30].

An algebra ’C̃’ together with a conjugate linear involution map ∗ : C̃ → C̃, de-

fined by ã→ ã∗ such that for all ã, b̃ ∈ C̃, we have (ãb̃)∗ = b̃∗ã∗ and (ã∗)∗ = ã,

is called a � - algebra.

Moreover, if C̃ an identity element ĨC̃ , then the pair (C̃, �) is called a unital �

- algebra.

A unital � - algebra (C̃, �) together with a complete sub multiplicative norm

satisfying ã = ã∗ for all ã ∈ C̃ is called a Banach � - algebra.

A C∗ - algebra is a Banach �-algebra (C̃, �) such that ã∗ã = ã2 for all ã ∈ C̃.

An element ã ∈ C̃ is called a positive element if ã = ã∗ and

σ(ã) ⊂ R(C)∗ is set of non-negative fuzzy soft real numbers, where σ(ã) =

{λ ∈ R(C)∗ : λĨ − ã, is non-invertible}. If ã ∈ C̃ is positive, we write it as

ã ≥ 0̃C̃ .

Using positive elements, one can define partial ordering on C̃ as follows:

ã � b̃ if and only if 0̃C̃ � b̃− ã. Each positive element ’ã’of a C∗-algebra C̃ has

a unique positive square root. Subsequently, C̃ will denote a unital C∗-algebra

with the identity element ĨC̃ . Further, C̃+ is the set {ã ∈ 0̃C̃ � ã} of positive

11



element of C̃.

A C∗-algebra valued Fuzzy soft metric space is defined in the following .

Definition 1.6.1 (Ravi et al.[79]): Let C ⊆ E and Ẽ be the absolute

fuzzy soft set that is FE(e) = 1̃ for all e ∈ E. Let C̃ denote the C∗-algebra.

The C∗-algebra valued fuzzy soft metric using fuzzy soft points is defined as a

mapping d̃c∗ : Ẽ × Ẽ → C̃ satisfying the following conditions.

(M0) 0̃C̃ � d̃(Fe1 , Fe2), for all Fe1 , Fe2 ∈ Ẽ,

(M1) d̃c∗(Fe1 , Fe2) = 0̃C̃ ⇔ Fe1 = Fe2 ,

(M2) d̃c∗(Fe1 , Fe2) = d̃c∗(Fe2 , Fe1),

(M3) d̃c∗(Fe1 , Fe3) � d̃c∗(Fe1 , Fe2) + d̃c∗(Fe2 , Fe3) ∀ Fe1 , Fe2 , Fe3 ∈ Ẽ.

The fuzzy soft set Ẽ with the C∗-algebra valued fuzzy soft metric d̃c∗ is called

the C∗-algebra valued fuzzy soft metric space. It is denoted by (Ẽ, C̃, d̃c∗). It

is obvious that C∗-algebra valued fuzzy soft metric generalize the concept of

fuzzy soft metric spaces, replacing the set of fuzzy soft real numbers by C̃+.

Definition 1.6.2 (Ravi et al.[79]): A sequence {Fen} in a C∗-algebra valued

fuzzy soft metric space (Ẽ, C̃, d̃c∗) is said to converges to Fe� in Ẽ with respect

to C̃, if ||d̃c∗(Fen , Fe�)||C̃ → 0̃C̃ as n → ∞ that is for every 0̃C̃ ≺ ε̃ there

exists 0̃C̃ ≺ δ̃ and a positive integer N = (ε̃) such that ||d̃c∗(Fen , Fe�)|| < δ̃

implies that ||μa
Fen

(s)− μa
Fe�

(s)|| < ε̃ whenever n ≥ N . It is usually denoted

as lim
n→∞

Fen = Fe� .

Definition 1.6.3 (Ravi et al.[79]): A sequence {Fen} in a C∗ - algebra val-

ued fuzzy soft metric space (Ẽ, C̃, d̃c∗) is said to be Cauchy sequence, if for
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every 0̃C̃ ≺ ε̃ there exist 0̃C̃ ≺ δ̃ and a positive integer N = N(ε̃) such

that ||d̃c∗(Fen , Fem)|| < δ̃ implies that ||μa
Fen

(s) − μa
Fem

(s)|| < ε̃ when-

ever n,m ≥ N . That is ||d̃c∗(Fen , Fem)||C̃ → 0̃C̃ as n,m→∞.

Definition 1.6.4 (Ravi et al.[79]): A C∗-algebra valued fuzzy soft metric space

(Ẽ, C̃, d̃c∗) is said to be complete, if every Cauchy sequence in Ẽ converges to

some fuzzy soft point of Ẽ.

Example 1.6.5 (Ravi et al.[79]): Let C ⊆ R and E ⊆ R, let Ẽ be absolute

fuzzy soft set, that is Ẽ(e) = 1̃ for all e ∈ E, and C̃ = M2(R(A)∗), define

d̃c∗ : Ẽ × Ẽ → C̃ by

d̃c∗(Fe1 , Fe2) =

⎡
⎢⎣ i 0

0 i

⎤
⎥⎦

where i = inf{|μa
Fe1

(s)− μa
Fe2

(s)|/s ∈ C} and Fe1 , Fe2 ∈ Ẽ. Then d̃c∗ is a

C∗ - algebra valued fuzzy soft metric and (Ẽ, C̃, d̃c∗) is a complete C∗ - algebra

valued fuzzy soft metric space by the completeness of R(C)∗.

Lemma 1.6.6(Ravi et al.[79]): Let C̃ be a C∗-algebra with the identity

element ĨC̃ and x̃ be a positive element of C̃. If ã ∈ C̃ is such that ||ã|| < 1

then for m < n,

we have lim
n→∞

∑n
k=m(ã�)kx̃(ã)k = ĨC̃ || ˜

(x)
1
2 ||2
(

||ã||m
1−||ã||

)
....................(I)

and
∑n

k=m(ã�)kx̃(ã)k → 0̃C̃ as m→∞................(II)

Lemma 1.6.7 (Ravi et al.[79]): Suppose that C̃ is a unital C∗-algebra with

unit 1̃.

(i) If ã ∈ C̃+ with ||ã|| < 1
2

then Ĩ − ã is invertible and ||ã(Ĩ − ã)−1|| < 1,

(ii) suppose that ã, b̃ ∈ C̃ with ã, b̃ � 0̃C̃ and ãb̃ = b̃ã then ãb̃ � 0̃C̃ ,

(iii) C̃ ′ we denote the set {ã ∈ C̃/ãb̃ = b̃ã ∀ b̃ ∈ C̃}. Let ã ∈ C̃ ′, if b̃, c̃ ∈ C̃
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with b̃ � c̃ � 0̃ and Ĩ − ã ∈ C̃ ′
+ is an invertible operator, then

(Ĩ − ã)−1b̃ � (Ĩ − ã)−1c̃.

Notices that in C∗-algebra, if 0̃ � ã, b̃ one can’t conclude that 0̃ � ãb̃. Indeed,

consider the C∗-algebra M2(R(C)∗) and set

ã =

⎡
⎢⎣ Fe1(a) Fe2(a)

Fe2(a) Fe1(b)

⎤
⎥⎦ =

⎡
⎢⎣ 0.3 0.1

0.1 0.2

⎤
⎥⎦

and b̃ =

⎡
⎢⎣ Fe1(c) Fe2(c)

Fe2(c) Fe1(d)

⎤
⎥⎦ =

⎡
⎢⎣ 0.4 0.5

0.5 0.6

⎤
⎥⎦

then clearly ã � 0̃ and b̃ � 0̃ but ã, b̃ ∈M2(R(C)∗)+ while ãb̃ � 0̃ .

Section 1.7: COMPLEX VALUED METRIC SPACES

Azam et al.[2] introduced the concept of a complex valued metric space and ob-

tained sufficient conditions for the existence of common fixed points of a pair of

mappings satisfying a contractive type condition. Subsequently, Rouzkard and

Imdad[29] established some common fixed point theorems for maps satisfying

certain rational expressions in complex valued metric spaces to generalize the

results of [2]. In the same way, Sintunavarat et al.[108, 109] obtained common

fixed point results by replacing the constant of contractive condition to control

functions. Recently, Sitthikul and Saejung [48] and Klin-eam and Suanoom

[19] established some fixed point results by generalizing the contractive condi-

tions in the context of complex valued metric spaces. Very recently, Ahmad

et al.[38] obtained some new fixed point results for multi-valued mappings in

the setting of complex valued metric spaces.

A complex number z ∈ C is an ordered pair of real numbers, whose first co-

ordinate is called Re(z) and second co-ordinate is called Im(z). Let z1, z2 ∈ C.
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Define a partial order � on C as follows:

z1 � z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Thus z1 � z2 if one of the following holds:

(1)Re(z1) = Re(z2) and Im(z1) = Im(z2),

(2)Re(z1) < Re(z2) and Im(z1) = Im(z2),

(3)Re(z1) = Re(z2) and Im(z1) < Im(z2),

(4)Re(z1) < Re(z2) and Im(z1) < Im(z2).

Definition 1.7.1 (Azam et al. [2]): Let X be a non empty set. A function

d : X × X → C is called a complex valued metric on X if for all x, y, z ∈ X
the following conditions are satisfied:

(i) 0 � d(x, y) and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) � d(x, z) + d(z, y).

The pair (X, d) is called a complex valued metric space.

Let {xn} be a sequence in X and x ∈ X. If for every c ∈ C with 0 � c

there is n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, then {xn} is said to

be convergent to x and x is called the limit point of {xn}. We denote this by

lim
n→∞

xn = x or xn → x as n → ∞. If for every c ∈ C with 0 ≺ c there is

n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c, where m ∈ N, then {xn}
is called Cauchy sequence in(X, d). If every Cauchy sequence is convergent in

(X, d) then (X, d) is called a complete complex valued metric space.

Lemma 1.7.2(Azam et al. [2]): Let (X, d) be a complex valued metric space

and let {xn} be a sequence in X. Then {xn} converges to x if and only if

|d(xn, x)| → 0 as n→∞.

Lemma1.7.3(Azam et al. [2]): Let (X, d) be a complex valued metric space
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and let {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only

if |d(xn, xn+m)| → 0 as n,m→∞.

Remark 1.7.4(Ahmad et al.[38]): Let (X, d) be a complex valued metric

space and let CB(X) be a collection of nonempty closed subsets of X. Let

T : X → CB(X) be a multi-valued map. For x ∈ X and A ∈ CB(X),

define Wx(A) = {d(x, a) : a ∈ A}.
Thus, for x, y ∈ X. Wx(Ty) = {d(x, u) : u ∈ Ty}.
Definition 1.7.5(Ahmad et al.[38]): Let (X, d) be a complex valued metric

space. A nonempty subset A of X is called bounded from below if there exists

some z ∈ C such that z � a for all a ∈ A.

Definition 1.7.6(Ahmad et al.[38]): Let (X, d) be a complex valued metric

space. A multivalued mapping F : X → 2C is called bounded from below if

for each x ∈ X there exists zx ∈ C such that zx � u for all u ∈ Fx.
Definition 1.7.7(Ahmad et al.[38]): Let (X, d) be a complex valued metric

space. The multi-valued mapping T : X → CB(X) is said to have the lower

bound property (l.b.Property) on (X, d) if for any x ∈ X, the multi-valued

mapping Fx : X → 2C defined by Fx(y) = Wx(Ty) is bounded from below.

That is for x, y ∈ X, there exists an element lx(Ty) ∈ C such that lx(Ty) � u,

for all u ∈ Wx(Ty), where lx(Ty) is called a lower bound of T associated with

(x, y).

Definition 1.7.8(Ahmad et al.[38]): Let (X, d) be a complex valued metric

space. The multivalued mapping T : X → CB(X) is said to have the greatest

lower bound proerty (g.l.b.Property) on (X, d) if the greatest lower bound of

Wx(Ty) exists in C for all x, y ∈ X. We denote d(x, Ty) by the g.l.b.Property

of Wx(Ty). That is d(x, Ty) = inf{d(x, u) : u ∈ Ty}.
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Definition 1.7.9(Kamaran et al.[102]): Let f : X → X,S : X → CB(X).

f is said to be S-weakly commuting at x ∈ X if f 2x ∈ Sfx.

Section 1.8 : COMPLEX VALUED S-METRIC SPACES

In 2011, Azam et al.[2] introduced the concept of a complex valued metric

space and obtained sufficient conditions for the existence of common fixed

points of a pair of mappings satisfying contractive type conditions. Later

several authors proved fixed and common fixed point theorems in complex

valued metric spaces, for example(refer[3, 29, 34, 46, 48, 54, 68, 87, 108]). On

other hand the concept of S-metric spaces was introduced by S.Sedghi[91].

Later several authors proved fixed point results in S-metric spaces for example

(refer[39, 47, 53, 71, 90, 92].

Recently Nabil et al.[70] introduced the concept of Complex valued S- metric

spaces and proved common fixed point theorem in Complex valued S-metric

spaces.

Definition 1.8.1(Sedghi et al.[91]): Let X be a non-empty set.

A S-metric on X is a function S : X3 −→ R+ that satisfies the following

conditions for all x, y, z, a ∈ X.

(S1) S(x, y, z) = o if and only if x = y = z,

(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called a S-metric space.

Definition 1.8.2(Nabil et al.[70): Let X be a non-empty set. A complex

valued S-metric on X is a function S : X3 → C that satisfies the following

conditions, for all x, y, z, a ∈ X :
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(i) 0 � S(x, y, z),

(ii) S(x, y, z) = 0 if and only if x = y = z,

(iii) S(x, y, z) � S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called a complex valued S-metric space.

Example 1.8.3: Let X = C. Define S : C3 → C by:

S(z1, z2, z3) = [|Re(z1)−Re(z3)|+ |Re(z2)−Re(z3)|] + i[|Im(z1)− Im(z3)|+
|Im(z2)− Im(z3)|]. Then (X,S) is a complex valued S-metric space.

Definition 1.8.4(Nabil et al.[70]): If (X,S) is called a complex valued

S-metric space, then

(1) A sequence {xn} in X converges to x if and only if for all ε such that

0 ≺ ε ∈ C, there exists n0 ∈ N such that for all n ≥ n0, we have

S(xn, xn, x) ≺ ε and we denote this by lim
n→∞

xn = x.

(2) A sequence {xn} in X is called a Cauchy sequence if for all ε such that

0 ≺ ε ∈ C, there exists n0 ∈ N such that for all n,m ≥ n0, we have

S(xn, xn, xm) ≺ ε.

(3) An S-metric space (X,S) is said to be complete if for every Cauchy

sequence is convergent.

Lemma 1.8.5(Nabil et al.[70]): Let (X,S) be a complex valued S-metric

space and {xn} be a sequence in X. Then {xn} converges to x if and only if

|S(xn, xn, x)| → 0 as n→∞.

Lemma 1.8.6(Nabil et al.[70]): Let (X,S) be a complex valued S-metric

space and {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and

only if |S(xn, xn, xn+m)| → 0 as n→∞ and m→∞ .
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Lemma 1.8.7(Nabil et al.[70]): Let (X,S) be a complex valued S-metric

space. Then S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Section 1.9: Sb - METRIC SPACES

In 2012, Sedghi et al.[91] introduced the notion of S-metric space and

proved several results. On the other hand the concept of b-metric space was in

troduced by Czerwik[8]. Recently Sedghi et al.[89] defined Sb-metric spces by

using the concept of S and b-metric spaces and proved common fixed points of

four maps in Sb-metric spaces. Later several authors proved fixed and coupled

fixed point results in Sb-metric spaces for example (refer[43, 73., 88, 110]).

Definition 1.9.1 (Sedghi et al.[89]): Let X be a non-empty set and b ≥ 1

be given real number. Suppose that a mapping Sb : X3 → R+ be a function

satisfying the following properties :

(Sb1) 0 < Sb(x, y, z) for all x, y, z ∈ X with x �= y �= z,

(Sb2) Sb(x, y, z) = 0⇔ x = y = z,

(Sb3) Sb(x, y, z) ≤ b(Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)) for all x, y, z, a ∈ X.

Then the function Sb is called a Sb-metric on X and the pair (X,Sb) is called

a Sb-metric space.

Remark 1.9.2 (Sedghi et al.[89]): It should be noted that, the class of

Sb-metric spaces is effectively larger than that of S-metric spaces. Indeed each

S-metric space is a Sb-metric space with b = 1.

Following example shows that a Sb-metric on X need not be a S-metric on

X.
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Example1.9.3(Sedghi et al.[89]): Let (X,S) be a S-metric space, and

S∗(x, y, z) = Sb(x, y, z)
p, where p > 1 is a real number. Note that S∗ is a

Sb-metric with b = 22(p−1). Also, (X,S∗) is not necessarily a S-metric space.

Definition 1.9.4(Sedghi et al.[89]): Let (X,Sb) be a Sb-metric space.

Then, for x ∈ X, r > 0 we defined the open ball BS(x, r) and closed ball

BS[x, r] with center x and radius r as follows respectively:

BS(x, r) = {y ∈ X : Sb(y, y, x) < r},
BS[x, r] = {y ∈ X : Sb(y, y, x) ≤ r}.

Lemma 1.9.5 (Sedghi et al.[89]): In a Sb-metric space, we have

Sb(x, x, y) ≤ bSb(y, y, x)

and

Sb(y, y, x) ≤ bSb(x, x, y).

Lemma 1.9.6(Sedghi et al.[89]): In a Sb-metric space, we have

Sb(x, x, z) ≤ 2bSb(x, x, y) + b2Sb(y, y, z)

Definition 1.9.7(Sedghi et al.[89]): If (X,Sb) be a Sb-metric space. A

sequence {xn} in X is said to be:

(1) Sb-Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such that

Sb(xn, xn, xm) < ε for each m,n ≥ n0.

(2) Sb-convergent to a point x ∈ X if, for each ε > 0, there exists n0 ∈ N

such that Sb(xn, xn, x) < ε or Sb(x, , x, xn) < ε for all n ≥ n0 and it is

denoted by lim
n→∞

xn = x.
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Definition 1.9.8(Sedghi et al.[89]): A Sb-metric space (X,Sb) is called

complete if every Sb-Cauchy sequence is Sb-convergent in X.

Lemma 1.9.9 (Sedghi et al.[89]): If (X,Sb) be a Sb-metric space with

b ≥ 1 and suppose that {xn} is a Sb-convergent to x, then we have

(i) 1
2b
Sb(y, x, x) ≤ lim

n→∞
inf Sb(y, y, xn)

≤ lim
n→∞

supSb(y, y, xn) ≤ 2bSb(y, y, x) and

(ii) 1
b2
Sb(x, x, y) ≤ lim

n→∞
inf Sb(xn, xn, y)

≤ lim
n→∞

supSb(xn, xn, y) ≤ b2Sb(x, x, y) for all y ∈ X

In particular, if x = y, then we have lim
n→∞

Sb(xn, xn, y) = 0.

Section 1.10 : COMPLEX VALUED Sb - METRIC SPACES

Recently N.Priyobarta et al.[72] inspired by the concept of Sb-metric spaces

introduced the concept of Complex valued Sb-metric spaces and proved some

fixed point theorems.

Definition 1.10.1(Priyobarta et al.[72]): Let X be a non empty set and

b ≥ 1 be a given real number. Suppose that a mapping S : X3 → C satisfies

(CSb1) 0 ≺ S(x, y, z) for all x, y, z ∈ X with x �= y �= z �= x,

(CSb2) S(x, y, z) = 0⇔ x = y = z,

(CSb3) S(x, x, y) = S(y, y, x),for all x, y ∈ X,

(CSb4) S(x, y, z) � b(S(x, x, a) + S(y, y, a) + S(z, z, a)) for all x, y, z, a ∈ X.

Then, S is called a complex valued Sb -metric and (X,S) is called a

complex valued Sb-metric space.
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Definition 1.10.2(Priyobarta et al.[72]): Let (X,S) be a complex valued

Sb-metric space, let {xn} be a sequence in X.

(i) {xn} is a complex valued Sb-convergent to x if for every a ∈ C with

0 < a, there exists k ∈ C such that S(xn, xn, x) ≺ a or S(x, x, xn) ≺ a

for all n � k and denoted by lim
n→∞

xn = x.

(ii) A sequence {xn} is called complex valued Sb Cauchy if for every a ∈ C

with 0 < a, there exists k ∈ C such that S(xn, xn, xm) ≺ a for each

n,m ≥ k.

(iii) If every complex valued Sb-Cauchy sequence is complex valued

Sb-convergent in (X,S), then (X,S) is said to be complex valued Sb

complete.

Proposition 1.10.3(Priyobarta et al.[72]): Let (X,S) be a complex valued

Sb-metric space and let {xn} be a sequence in X. Then (X,S) is complex

valued Sb-convergent to x if and only if |S(xn, xn, x)| → 0 as n→∞ or

|S(x, x, xn)| → 0 as n→∞ .

Theorem 1.10.4(Priyobarta et al.[72]): Let (X,S) be a complex valued

Sb-metric space, then for a sequence {xn} inX and a point x ∈ X, the following

are equvalent

(1) {xn} is a complex valued Sb convergent to x.

(2) |S(xn, xn, x)| → 0 as n→∞.

Theorem 1.10.5(Priyobarta et al.[72]): Let (X,S) be a complex valued Sb-

metric space and {xn} be a sequence in X. Then {xn} is complex valued Sb
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Cauchy sequence if and only if |S(xn, xm, xl)| → 0 as n,m, l →∞.

Section 1.11 : α - ADMISSIBLE FUNCTION

Samet et al. [16] introduced the concept of α-admissible mappings and Salimi

et al.[77] modified the concept of Samet et al. [16].

Definition 1.11.1(Samet et al.[16]): Let X be a non-empty set and T be

a self-mapping on X and let α : X ×X → R+ be a function. T is said to be

α-admissible mapping if x, y ∈ X, α(x, y) ≥ 1⇒ d(Tx, Ty) ≥ 1.

Definition 1.11.2(Karpinar et al.[26]): Let X be a non-empty set and T

be an α-admissible mapping on X. T is said to be a triangular α-admissible

mapping if x, y, z ∈ X, α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1.

Definition 1.11.3(Salimi et al.[77]): Let X be a non-empty set and T be

a self-mapping on X and α, η : X × X → R+ be two functions. Then T is

an α-admissible mapping with respect to η if x, y ∈ X,α(x, y) ≥ η(x, y) ⇒
α(Tx, Ty) ≥ η(Tx, Ty).

Definition 1.11.4(Hussain et al.[69]): Let Ψ be the family of non-decrasing

functions ψ : R+ → R+ such that
∞∑

n=1

ψn(t) < t for each t > 0.

Section 1.12: DISLOCATED QUASI b-METRIC SPACES

Hitzler [75] and Hitzler and Seda [74] introduced the notion of dislocated

metric spaces and generalized the celebrated Banach contraction principle in

such spaces. Zeyada et al. [28] initiated the concept of dislocated quasi metric

spaces and generalized the results of Hitzler and Seda[74] in dislocated quasi

metric spaces. The notion of b-metric spaces was introduced by Czerwic [85]
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in connection with some problems concerning with the convergence of non

measurable functions with respect to measure. In the year 2015, Klin-eam

and Suanoom [20] introduced the concept of dislocated quasi b-metric spaces

based on the concepts of b-metric spaces [85] and quasi b-metric spaces [63]

and provided some fixed point theorems by using cyclic contractions. Later

several authors worked on dislocated quasi b-metric spaces and obtained fixed

and common fixed points using various contraction conditions for single map

and two maps.

Definition 1.12.1(Klin-eam et al.[20]): Let X be a non-empty set and

k ≥ 1 be a real number then a mapping d : X ×X → R+ is called dislocated

quasi b-metric if ∀ x, y, z ∈ X

(d1) d(x, y) = d(y, x) = 0 implies that x = y,

(d2) d(x, y) ≤ k[d(x, z) + d(z, y)].

The pair (X, d) is called dislocated quasi b-metric space.

Definition 1.12.2(Klin-eam et al.[20]): A sequence {xn} is called dislo-

cated quasi b-convergent in (X, d) if lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(x, xn). Then x

is called the dislocated quasi b-limit of the sequence {xn}.
Definition 1.12.3(Klin-eam et al.[20]): A sequence {xn} in

dislocated quasi b-metric space (X, d) is called Cauchy squence if

lim
m,n→∞

d(xm, xn) = 0 = lim
m,n→∞

d(xn, xm).

Definition 1.12.4(Klin-eam et al.[20]): A dislocated quasi b-metric space

(X, d) is said to be complete if every Cauchy sequence in X convergent to a

point of X.

Lemma 1.12.5(Klin-eam et al.[20]): Let(X, d) be a dislocated quasi b-
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metric space and {xn} be dislocated quasi b-convergent to x ∈ X and y ∈ X be

arbitrary. Then 1
k
d(x, y) ≤ lim

n→∞
inf d(xn, y) ≤ lim

n→∞
sup d(xn, y) ≤ kd(x, y)

and

1
k
d(y, x) ≤ lim

n→∞
inf d(y, xn) ≤ lim

n→∞
sup d(y, xn) ≤ kd(y, x).

Note 1.12.6: 1
2k
d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X.

SYNOPSIS OF THE THESIS

This thesis is divided into seven chapters.

Chapter 1: Introduction and Preliminaries

In this Chapter we present some known basic notions like fixed and cou-

pled fixed points, concepts regarding to α - admissible maps, Presic type and

Suzuki type fixed point theorems in metric, G - metric, complex valued metric,

fuzzy metric, C∗-algebra valued fuzzy soft metric, complex valued S-metric,

Sb-metric, complex valued Sb-metric and dislocated quasi b-metric spaces and

as well as contents of the thesis.

Chapter 2: Common Fixed and Coincidence Point Theorems in

Some Spaces

We divide this chapter into three sections namely, Section 2.1, Section 2.2 and

Section 2.3.

In Section 2.1, first we prove a common fixed point theorem for three

expansive mappings. Our result generalizes the theorems of Zead et al.[115].

Also we prove another theorem for two jungck type expansive mappings. And

we obtain corollary for single map.

In Section 2.2, we introduce the definition of jointly 2k-weakly compatible

pairs of maps. We obtain a Presic type fixed point theorem for two pairs
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of jointly 2k-weakly compatible maps in fuzzy metric spaces. We obtain two

corollaries for three and two maps respectively which are slight variations of

theorems of Rao et al.[42,45].Our main result extends the theorem of Murthy

et al.[76]. We also give an example to illustrate our main theorem.

In Section 2.3, we obtain a coincidence point theorem for two pairs of hybrid

mappings in complex valued metric spaces. Our result generalize the theorem

of Azam et al.[4].

Chapter 3: Coupled and Coincidence Point Theorems in C∗-

Algebra Valued Fuzzy Soft Metric Spaces.

We divide this chapter into two sections namely, Section 3.1 and Section 3.2.

In Section 3.1, we establish the existence and uniqueness of common

coupled fixed point results for three mappings in C∗-algebra valued fuzzy soft

metric spaces. Moreover, we give an illustration which presents the applicabil-

ity of the achieved results. Also we provided application to Integral Equations.

In Section 3.2, we obtain a coincidence point theorem for a hybrid pair of

single valued and multivalued mappings in complete C∗-algebra valued fuzzy

soft metric spaces. An example is also given to validate our results.

Chapter 4: Unique Common Fixed Point Theorem for Four maps

in Complex valued S-metric Spaces.

In this Chapter, we prove a common fixed point theorem for four maps satis-

fying more general contractive condition using 7 functions in Complex valued

S-metric spaces. We also provide an example to illustrate our result.

Our result generalize the theorem of Naval Singh et al.[68].

Chapter 5: Common And Coupled Fixed Point Teorems in Sb-

Metric Spaces.
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We divide this chapter into two sections namely, Section 5.1 and Section 5.2.

In Section 5.1, we obtain a uniquene common fixed point theorem for two

weakly compatible pairs of mappings satisfing a contractive condition in Com-

plex valued Sb-metric spaces. we also provide an example to illustrate our

theorem. Our result generalize the theorem of N.Priyobarta et al.[72].

In Section 5.2, we obtain Suzuki type common coupled fixed point theorems

in Sb metric spaces for four maps and single map respectively. We also furnish

an example which supports our main result. Our result generalize the theorem

of Sedghi et al.[89].

Chapter 6: A New Common Coupled Fixed Point Result For

Contractive Maps Involving Dominating Functions

In this chapter we extend the Salimi et al.[77] Defintion from single map to

jungck type maps of which one is a coupled map. Mainly we establish a

new common coupled fixed point theorem for contractive inequalities using

auxiliary function which dominate the ordinary metric function for two maps.

Also obtain a common fixed point for four maps. Our result generalize the

theorem of N.Hussain et al.[69].

Chapter 7: Unique Common Fixed Point Theorem of

Integral Type Contraction For Four Maps In Dislocated Quasi b-

Metric Spaces

In this Chapter, we prove two unique common fixed point theorems using con-

tractive condition of integral type in dislocated quasi b-metric spaces. In the

first theorem, we used the continuities of all four mappings and commutativity

of two pair of maps. In the second theorem, we replaced the commutativity

and continuity of maps in Theorem 7.4. by weakly compatible pairs and com-

27



pleteness of one of the range set of maps.

Our result extends the theorem of M.U.Rahman et al.[67]. We also give two

examples to support our theorems.

After Chapter 7, we give a list of references used for the preparation of this

thesis.
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CHAPTER 2

COMMON FIXED AND COINCIDENCE POINT THEOREMS IN SOME

SPACES

We divided Chapter 2 into three sections, namely, Section 2.1., Section

2.2. and Section 2.3. The main aim of the Chapter is to prove common fixed

point theorem in G - metric spaces, a unique common fixed point theorem

for four mappings satisfying Presic type condition in fuzzy metric spaces and

concidence point theorem for two pairs of hybrid mappings in complex valued

metric spaces.

SECTION 2.1: COMMON FIXED POINT THEOREM FOR

EXPANSIVE MAPPINGS IN G-METRIC SPACES

Recently Zead et al.[115] proved the following theorems.

Theorem 2.1.1.(Zead et al.[115]): Let (X,G) be a complete G-metric

space. If there exists a constant a > 1 and a surjective mapping T on X, such

that for all x, y, z ∈ X

(i) G(Tx, Ty, Tz) ≥ aG(x, y, z).

Then T has a fixed point.

Theorem 2.1.2.(Zead et al.[115]): Let (X,G) be a complete G-metric space,

T : X → X an onto and continuous mapping satisfying the following condition

for all x ∈ X

(i) G(T (x), T 2(x), T 3(x)) ≥ aG(x, Tx, T 2x)

where a > 1. Then T has a fixed point.
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In this section, we obtain a common fixed point theorem for three expansive

mappings and a unique common fixed point theorem for two Jungck type

expansive mappings in G-metric spaces. Our main theorem generalise the

Theorem 2.1.1 and Theorem 2.1.2.

Now we give our Main Theorem.

Theorem 2.1.3. Let (X,G) be a complete G- metric space. If there exist

a constant q > 1 and surjective mappings A,B and C on X such that

G(Ax,By, Cz) ≥ qmax

⎧⎪⎨
⎪⎩

G(x, y, z), G(x,Ax,Cz),

G(y,By,Ax), G(z, Cz,By)

⎫⎪⎬
⎪⎭

for all x, y, z ∈ X, then

(a) A or B or C has a fixed point in X,

(or)

(b) A,B and C has a unique common fixed point in X.

Proof: Let x0 ∈ X, there exist x1, x2, x3 ∈ X such that

x0 = Ax1, x1 = Bx2, x2 = Cx3.

By induction we have

x3n = Ax3n+1, x3n+1 = Bx3n+2, x3n+2 = Cx3n+3, n = 0, 1, 2... .

If x3n+1 = x3n then Ax = x where x = x3n.

If x3n+2 = x3n+1 then Bx = x where x = x3n+1.

If x3n+3 = x3n+2 then Cx = x where x = x3n+2.

Assume that xn �= xn+1 for all n.
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Denote dn = G(xn, xn+1, xn+2).

d3n−1 = G(x3n−1, x3n, x3n+1)

= G(Cx3n, Ax3n+1, Bx3n+2)

≥ qmax

⎧⎪⎨
⎪⎩

G(x3n+1, x3n+2, x3n), G(x3n+1, x3n, x3n−1),

G(x3n+2, x3n+1, x3n), G(x3n, x3n−1, x3n+1)

⎫⎪⎬
⎪⎭

= qmax {d3n, d3n−1, d3n, d3n−1} .

Thus we have d3n−1 ≥ qd3n so that

d3n ≤ kd3n−1 where k = 1
q
< 1 (1)

d3n = G(x3n, x3n+1, x3n+2)

= G(Ax3n+1, Bx3n+2, Cx3n+3)

≥ qmax

⎧⎪⎨
⎪⎩

G(x3n+1, x3n+2, x3n+3), G(x3n+1, x3n, x3n+2),

G(x3n+2, x3n+1, x3n), G(x3n+3, x3n+2, x3n+1)

⎫⎪⎬
⎪⎭

= qmax {d3n+1, d3n, d3n, d3n+1} .

Thus we have d3n ≥ qd3n+1 so that d3n+1 ≤ kd3n (2)

d3n+1 = G(x3n+1, x3n+2, x3n+3)

= G(Bx3n+2, Cx3n+3, Ax3n+4)

≥ qmax

⎧⎪⎨
⎪⎩

G(x3n+4, x3n+2, x3n+3), G(x3n+4, x3n+3, x3n+2)

G(x3n+2, x3n+1, x3n+3), G(x3n+3, x3n+2, x3n+1)

⎫⎪⎬
⎪⎭

= qmax {d3n+2, d3n+2, d3n+1, d3n+1} .

Thus we have d3n+1 ≥ qd3n+2 so that d3n+2 ≤ kd3n+1 (3)

From (1), (2) and (3) we have dn ≤ kdn−1, n = 1, 2, 3....
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From (G3) we have

G(xn, xn, xn+1) ≤ G(xn, xn+1, xn+2)

≤ kG(xn−1, xn, xn+1)

≤ k2G(xn−2, xn−1, xn)

:

:

≤ knG(x0, x1, x2).

Now using (G5), for m > n

G(xn, xn, xm)

≤ G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2) +G(xn+2, xn+2, xn+3) + .....+G(xm−1, xm−1, xm)

≤ (kn + kn+1 + kn+2 + ...+ km−1)G(x0, x1, x2)

≤ kn

1−k
G(x0, x1, x2)

→ 0 as n→∞ m→∞.
Hence {xn} is G-Cauchy. Since (X,G) is complete, there exists p ∈ X such

that {xn} is G-convergent to p.

Now

G(Ap, x3n+1, x3n+2) = G(Ap,Bx3n+2, Cx3n+3)

≥ qmax

⎧⎪⎨
⎪⎩

G(p, x3n+2, x3n+3), G(p,Ap, x3n+2),

G(x3n+2, x3n+1, Ap), G(x3n+3, x3n+2, x3n+1)

⎫⎪⎬
⎪⎭

letting n →∞ , we get

G(Ap, p, p) ≥ q max{0, G(p,Ap, p), G(p, p, Ap), 0}.
Thus G(Ap, p, p) = 0 so that Ap = p.

G(x3n, Bp, x3n+2) = G(Ax3n+1, Bp, Cx3n+3)

≥ q max

⎧⎪⎨
⎪⎩

G(x3n+1, p, x3n+3), G(x3n+1, x3n, x3n+2),

G(p,Bp, x3n), G(x3n+3, x3n+2, Bp)

⎫⎪⎬
⎪⎭
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letting n→∞ we get

G(p,Bp, p) ≥ q max{0, 0, G(p,Bp, p), G(p,Bp, p)}.
Thus G(p,Bp, p) = 0 so that Bp = p.

G(x3n, x3n+1, Cp) = G(Ax3n+1, Bx3n+2, Cp)

≥ qmax

⎧⎪⎨
⎪⎩

G(x3n+1, x3n+2, p), G(x3n+1, x3n, Cp),

G(x3n+2, x3n+1, x3n), G(p, Cp, x3n+1)

⎫⎪⎬
⎪⎭

letting n→∞ we get

G(p, p, Cp) ≥ q max{0, G(p, p, Cp), 0, G(p, Cp, p)}.
Thus G(p, p, Cp) = 0 so that Cp = p.

Thus p is a common fixed point of A,B and C.

Now consider

G(p, p, p′) = G(Ap,Bp, Cp′)

≥ q max {G(p, p, p′), G(p, p, p′), 0, G(p′, p′, p)}
≥ q max

{
G(p, p, p′), 1

2
G(p, p, p′)

}
since G(p, p, p′) ≤ 2G(p′, p′, p)

= q G(p, , p, p′).

Hence p′ = p.

Thus p is a unique common fixed point of A,B and C.

Corollary 2.1.4. Let (X,G) be a complete G- metric space. If there exist

a constant q > 1 and surjective mapping T on X such that

G(Tx, Ty, Tz) ≥ qmax

⎧⎪⎨
⎪⎩

G(x, y, z), G(x, Tx, Tz),

G(y, Ty, Tx), G(z, Tz, Ty)

⎫⎪⎬
⎪⎭

for all x, y, z ∈ X, then T has a unique fixed point in X.

Proof: Let x0 ∈ X. There exists a sequence {xn} in X such that

xn = Txn+1, n = 0, 1, 2......
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If xn = xn+1 for some n then Tx = x, where x = xn+1.

Assume that xn �= xn+1 for all n.

The rest of the proof follows as in Theorem 2.1.3

Theorem 2.1.5. Let (X,G) be a G- metric space and A, f : X → X be

satisfying

(2.1.5.1)

G(Ax,Ay,Az) ≥ qmax

⎧⎪⎨
⎪⎩

G(fx, fy, fz), G(fx,Ax, fz)

G(fy,Ay, fx), G(fz, Az, fy)

⎫⎪⎬
⎪⎭

for all x, y, z ∈ X,where q > 1 ,

(2.1.5.2) f(X) ⊆ A(X) and f(X) is a G-complete sub space of X and

(2.1.5.3) the pair (A, f) is weakly compatible .

Then A and f have a unique common fixed point .

Proof: Let x0 ∈ X. From (2.1.5.2), there exists x1 ∈ X such that

fx0 = Ax1 = y1, say.

Inductively, there exist sequences {xn} and {yn} in X such that

fxn = Axn = yn, n = 1, 2, 3, ...

Case(i): Suppose yn = yn+1 for some n. Then fxn−1 = Axn−1.

Thus fp = Ap where p = xn−1. Since (A, p) is weakly compatible,

we have f 2p = f(fp) = f(Ap) = Afp = A2p.

G(A2p,Ap,Ap) ≥ qmax

⎧⎪⎨
⎪⎩

G(fAp, fp, fp), G(fAp,AAp, fp),

G(fp,Ap, fAp), G(fp,Ap, fp)

⎫⎪⎬
⎪⎭

= qmax

⎧⎪⎨
⎪⎩

G(A2p,Ap,Ap), G(A2p,A2p,Ap),

G(Ap,Ap,A2p), 0

⎫⎪⎬
⎪⎭

≥ qG(A2p,A2p,Ap),
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and similarly we get G(A2p,A2p,Ap) ≥ q2 G(A2p,Ap,Ap),

so G(A2p,Ap,Ap) ≥ q2 G(A2p,A2p,Ap) which is a contradiction.

Hence A2p = Ap. Then fAp = A2p = Ap.

Ap is a common fixed point of f and A.

Case(ii): Assume that yn �= yn+1 for all n

G(yn−1, yn−1, yn) = G(Axn−1, Axn−1, Axn)

≥ qmax

⎧⎪⎨
⎪⎩

G(yn, yn, yn+1), G(yn, yn−1, yn+1),

G(yn, yn−1, yn), G(yn+1, yn, yn)

⎫⎪⎬
⎪⎭

≥ qmax

⎧⎪⎨
⎪⎩

G(yn, yn, yn+1), G(yn−1, yn−1, yn),

1
2
G(yn−1, yn−1, yn), G(yn, yn, yn+1)

⎫⎪⎬
⎪⎭ ,

since G(yn+1, yn−1, yn) = G(yn−1, yn, yn+1) and

G(yn−1, yn−1, yn) ≤ 2 G(yn−1, yn, yn+1).

Thus G(yn−1, yn−1, yn ≥ q G(yn, yn, yn+1).

Hence

G(yn, yn, yn+1) ≤ kG(yn−1, yn−1, yn) where k = 1
q
< 1

≤ k2G(yn−2, yn−2, yn−1)

≤ k3G(yn−3, yn−3, yn−2)

:

:

≤ knG(y0, y0, y1).

Now using (G5), for m < n we have

G(yn, yn, ym) ≤ G(yn, yn, yn+1) +G(yn+1, yn+1, yn+2) + ......+G(ym−1, ym−1, yn)

≤ (kn + kn+1 + ...+ km−1)G(y0, y0, y1)

≤ kn

1−k
G(y0, y0, y1)

→ 0 as n → ∞,m → ∞.
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Hence {yn} is a G-Cauchy.

Since f(X) is G-complete, there exists p, t ∈ X such that yn → p = ft.

G(At, yn, yn) = G(At,Axn, Axn)

≥ qmax

⎧⎪⎨
⎪⎩

G(p, yn+1, yn+1), G(p,At, yn+1),

G(yn+1, yn, p), G(yn+1, yn, yn)

⎫⎪⎬
⎪⎭

letting n→∞, we get

G(At, p, p) ≥ q G(p,At, p). Thus At = p. Hence ft = At.

As in case(i), ft = At = p is common fixed point of f and A.

Uniqueness: Suppose p′ is another common fixed point of A and f .

G(p, p, p′) = G(Ap,Ap,Ap′)

≥ qmax

⎧⎪⎨
⎪⎩

G(p, p, p′), G(p, p, p′),

0, G(p, p, p′)

⎫⎪⎬
⎪⎭

≥ qmax
{
G(p, p, p′), 1

2
G(p, p, p′)

}
= q G(p, p, p′).

Hence p′ = p.

This part of the work was published in ‘Journal of Computer and

Mathematical Sciences’, Vol.1, No. 6, October, 2010, pp 716-720.
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SECTION 2.2: A UNIQUE COMMON FIXED POINT THEOREM FOR FOUR

MAPPINGS SATISFYING PRESIC TYPE CONDITION

IN FUZZY METRIC SPACES

In this section, we obtain a Presic type common fixed point theorem for

four maps in Fuzzy metric spaces. We also present one example to illustrate

our main theorem. Further, we obtain two more corollaries.

In 2013 Murthy and Rashmi [76] defined the following function.

Definition 2.2.1(Murthy et al.[76]): Let φ : [0, 1]k → [0, 1] be such that

(2.2.1.1) φ is increasing and continuous function in each variable,

(2.2.1.2) φ(t, t, t, ..., t) ≥ t for all t ∈ [0, 1].

Using this function, Murthy and Rashmi[76] extended the

Theorem 1.3.4(Ch-1) to fuzzy metric spaces as follows.

Theorem 2.2.2(Murthy et al.[76]): Let (X,M, ∗) be a fuzzy metric space and

S, T : X2k −→ X and f : X −→ X be mappings satisfying for each positive

integer k, 0 < q < 1
2

and t ∈ R+

(2.2.2.1) M(S(x1, x2, ..., x2k), T (x2, ..., x2k, x2k+1), qt)

≥ φ(M(fx1, fx2, t), ....,M(fx2k, fx2k+1, t) for all x1, x2, ...x2k+1 ∈ X,

(2.2.2.2) M(T (y1, y2, ..., y2k), S(y2, y3, ..., y2k+1), qt)

≥ φ(M(fy1, fy2, t), ....,M(fy2k, fy2k+1, t) for all y1, y2, ...y2k+1 ∈ X,

(2.2.2.3) M(S(u, u, ..., u), T (v, v, ..., v), qt) > M(fu, fv, t) for all u, v ∈ X with

u �= v.

Suppose that f(X) is complete and either (f, S) or (f, T ) is 2k-weakly com-

patible pair.
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Then there exists a unique p ∈ X such that

p = fp = S(p, p, ..., p) = T (p, p, ..., p).

Now we state the condition (A): lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X.

We observe that in the proof of Theorem 2.2.2 the authors Murthy

and Rashmi[76] inherently used the condition(A).

Now we introduce the definition of Jointly 2k weakly compatible pairs

as follows.

Definition 2.2.3. Let X be a nonempty set, k a positive integer and S, T :

X2k → X and f, g : X → X. The pair (f, S)and (g, T ) are said to be jointly 2k-

weakly compatible if f(S(x, x, ..., x) = S(fx.fx, ..., fx) and g(T (x, x, ..., x)) =

T (gx, gx, ..., gx) whenever there exists x ∈ X such that fx = S(x, x, ..., x) and

gx = T (x, x, ..., x).

Now we extend the Theorem 2.2.2 for four maps as follows using some different

conditions.

Throughout this section assume φ as in Definition 2.2.1.

Theorem 2.2.4. Let (X,M, ∗) be a fuzzy metric space with the condition (A),

k a positive integer and S, T : X2k −→ X and f, g : X −→ X be mappings

satisfying:

(2.2.4.1) S(X2k) ⊆ g(X), T (X2k) ⊆ f(X),

(2.2.4.2)

M(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k), qt)

≥ φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M(gx1, fy1, t),M(fx2, gy2, t),

M(gx3, fy3, t),M(fx4, gy4, t),

...

M(gx2k−1, fy2k−1, t),M(fx2k, gy2k, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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∀x1, x2, ..., x2k, y1, y2, .., y2k ∈ X,∀t > 0, 0 < q < 1,

(2.2.4.3) (f, S) and (g, T ) are jointly 2k-weakly compatible pairs.

(2.2.4.4) Suppose z = fu = gu for some u ∈ X whenever there exists a sequence

{y2k+n}∞n=1 in X such that lim
n→∞

y2k+n = z ∈ X.

Then z is the unique point in X such that z = fz = gz = S(z, z, .., z, z) =

T (z, z, ..., z, z).

Proof: Suppose x1, x2, ..., x2k are arbitrary points in X.

From (2.2.4.1), we define

y2k+2n−1 = S(x2n−1, x2n, ..., x2k+2n−2) = gx2k+2n−1

y2k+2n = T (x2n, x2n+1, ..., x2k+2n−1) = fx2k+2n for n = 1, 2, ....

Let α2n = M(fx2n, gx2n+1, qt) and α2n−1 = M(gx2n−1, fx2n, qt) for n = 1, 2, ...

Put θ = 1
q

and μ = min{θ 1+
√

α1

1−√
α1
, θ2

1+
√

α2

1−√
α2
, ..., θ2k

1+
√

α2k

1−√
α2k
}.Then θ > 1.

By the selection of μ, we have

αn ≥
(
μ− θn

μ+ θn

)2
for n = 1, 2, ..., 2k (1)

Consider

α2k+1

= M(gx2k+1, fx2k+2, qt)

= M(S(x1, x2, ...x2k−1, x2k), T (x2, x3, ...x2k, x2k+1), qt)

≥ φ(M(gx1, fx2, t),M(fx2, gx3, t), ...,M(fx2k, gx2k+1, t)

≥ φ(α1, α2, ...α2k−1, α2k), since M(x, y, .) and φ are increasing

≥ φ

((
μ−θ
μ+θ

)2
,
(

μ−θ2

μ+θ2

)2
, ...,

(
μ−θ2k

μ+θ2k

)2)
from (1)
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≥ φ

((
μ−θ2k

μ+θ2k

)2
,
(

μ−θ2k

μ+θ2k

)2
, ...,

(
μ−θ2k

μ+θ2k

)2)

≥
(

μ−θ2k

μ+θ2k

)2
, since φ(t, t, ..., t) ≥ t

≥
(

μ−θ2k+1

μ+θ2k+1

)2
.

Thus

α2k+1 ≥
(
μ− θ2k+1
μ+ θ2k+1

)2
(2)

Also

α2k+2

= M(fx2k+2, gx2k+3, qt)

= M(S(x3, x4, ...x2k+1, x2k+2), T (x2, x3, ...x2k, x2k+1), qt)

≥ φ(M(gx3, fx2, t),M(fx4, gx3, t), ...,M(fx2k+2, gx2k+1, t)

≥ φ(α2, α3, ...α2k, α2k+1)

≥ φ

((
μ−θ2

μ+θ2

)2
,
(

μ−θ3

μ+θ3

)2
, ...,

(
μ−θ2k

μ+θ2k

)2
,
(

μ−θ2k+1

μ+θ2k+1

)2)

≥ φ

((
μ−θ2k+1

μ+θ2k+1

)2
,
(

μ−θ2k+1

μ+θ2k+1

)2
, ...,

(
μ−θ2k+1

μ+θ2k+1

)2)

≥
(

μ−θ2k+1

μ+θ2k+1

)2
≥
(

μ−θ2k+2

μ+θ2k+2

)2
.

Thus

α2k+2 ≥
(
μ− θ2k+2
μ+ θ2k+2

)2
(3)

Continuing in this way,we have

αn ≥
(
μ− θn

μ+ θn

)2
, n = 1, 2, 3... (4)
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Now consider

M(y2k+2n−1, y2k+2n, t)

≥M(y2k+2n−1, y2k+2n, qt), since q < 1 and M(x, y, .) is increasing

= M

⎛
⎜⎝ S(x2n−1, x2n, x2n+1, ..., x2k+2n−3, x2k+2n−2),

T (x2n, x2n+1, ..., x2k+2n−2, x2k+2n−1), qt

⎞
⎟⎠

≥ φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M(gx2n−1, fx2n, t),M(fx2n, gx2n+1, t),

M(gx2n+1, fx2n+2, t),M(fx2n+2, gx2n+3, t),

............................................................

M(gx2k+2n−3, fx2k+2n−2, t),M(fx2k+2n−2, gx2k+2n−1, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≥ φ(α2n−1, α2n, α2n+1, ..., α2k+2n−3, α2k+2n−2), since φ and M are increasing

≥ φ

((
μ−θ2n−1

μ+θ2n−1

)2
,
(

μ−θ2n

μ+θ2n

)2
, ...,

(
μ−θ2k+2n−2

μ+θ2k+2n−2

)2)
from(4)

≥ φ

((
μ−θ2k+2n−2

μ+θ2k+2n−2

)2
,
(

μ−θ2k+2n−2

μ+θ2k+2n−2

)2
, ...,

(
μ−θ2k+2n−2

μ+θ2k+2n−2

)2)

≥
(

μ−θ2k+2n−2

μ+θ2k+2n−2

)2
≥
(

μ−θ2k+2n−1

μ+θ2k+2n−1

)2
Thus

M(y2k+2n−1, y2k+2n, t) ≥
(
μ− θ2k+2n−1
μ+ θ2k+2n−1

)2
(5)

Also

M (y2k+2n, y2k+2n+1, t)

≥M (y2k+2n, y2k+2n+1, qt) , since q < 1 and φ is increasing

= M

⎛
⎜⎝ S (x2n+1, x2n+2, x2n+3, ..., x2k+2n−1, x2k+2n) ,

T (x2n, x2n+1, x2n+2, ..., x2k+2n−2, x2k+2n−1) , qt

⎞
⎟⎠
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≥ φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M(gx2n+1, fx2n, t),M(fx2n+2, gx2n+1, t),

M(gx2n+3, fx2n+2, t),M(fx2n+4, gx2n+3, t),

......................................................,

M(gx2k+2n−1, fx2k+2n−2, t),M(fx2k+2n, gx2k+2n−1, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≥ φ (α2n, α2n+1, ..., α2k+2n−2, α2k+2n−1)

≥ φ

((
μ−θ2n

μ+θ2n

)2
,
(

μ−θ2n+1

μ+θ2n+1

)2
, ...,

(
μ−θ2k+2n−1

μ+θ2k+2n−1

)2)
from (4)

≥ φ

((
μ−θ2k+2n−1

μ+θ2k+2n−1

)2
,
(

μ−θ2k+2n−1

μ+θ2k+2n−1

)2
, ...,

(
μ−θ2k+2n−1

μ+θ2k+2n−1

)2)

≥
(

μ−θ2k+2n−1

μ+θ2k+2n−1

)2
, since φ(t, t, t, ..., t) ≥ t

≥
(

μ−θ2k+2n

μ+θ2k+2n

)2
.

Thus

M (y2k+2n, y2k+2n+1, t) ≥
(
μ− θ2k+2n
μ+ θ2k+2n

)2
(6)

Hence from (5) and (6) we have

M (y2k+n, y2k+n+1, t) ≥
(
μ− θ2k+n

μ+ θ2k+n

)2
for n = 1, 2, ... (7)

Now for n, p ∈ N , we have

M(y2k+n, y2k+n+p, t)

≥M(y2k+n, y2k+n+1,
t
p
) ∗M(y2k+n+1, y2k+n+2,

t
p
) ∗ ... ∗M

(
y2k+n+p−1, y2k+n+p,

t
p

)
≥
(

μ−θ2k+n

μ+θ2k+n

)2
∗
(

μ−θ2k+n+1

μ+θ2k+n+1

)2
∗ .... ∗

(
μ−θ2k+n+p−1

μ+θ2k+n+p−1

)2
, from(7)

→ 1 ∗ 1 ∗ 1 ∗ .... ∗ 1 as n →∞
= 1.

Hence {y2k+n} is a Cauchy sequence in X.

Since X is complete, there exists z ∈ X such that y2k+n → z as n→∞.

From (2.2.4.4), there exists u ∈ X such that

z = fu = gu (8)
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Now consider

M (S (u, u, ..., u, u) , y2k+2n, qt)

= M (S (u, u, ..., u, u) , T (x2n, x2n+1, ..., x2n+2k−2, x2n+2k−1) , qt)

≥ φ

⎛
⎜⎜⎜⎜⎝

M (gu, fx2n, t) ,M (fu, gx2n+1, t) ,

.............................................,

M (gu, fx2n+2k−2, t) ,M (fu, gx2k+2n−1, t)

⎞
⎟⎟⎟⎟⎠ .

Letting n→∞ and using (8), we get

M(S(u, u, , ..., u, u), fu, qt) ≥ φ(1, 1, ..., 1, 1) ≥ 1

which implies that

S(u, u, ..., u, u) = fu (9)

Similarly we can prove that

T (u, u, ..., u, u) = gu (10)

Since (f, S) and (g, T ) are jointly 2k-weakly compatible pairs, we have

fz = f(fu) = f(S(u, u, ..., u)) = S(fu, fu, ..., fu) = S(z, z, ..., z) (11)

and also

gz = T (z, z, ..., z, z) (12)

Now consider

M(fz, z, qt)

= M(S(z, z, ..., z, z), T (u, u, ..., u, u), qt), from (11), (8), (10)

≥ φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M(gz, fu, t),M(fz, gu, t),

M(gz, fu, t),M(fz, gu, t),

.......................................

M(gz, fu, t),M(fz, gu, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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≥ φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

min {M(gz, z, t),M(fz, z, t)} ,
min {M (gz, z, t) ,M (fz, z, t)} ,
.....................................................

min {M (gz, z, t) ,M (fz, z, t)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≥ min {M (gz, z, t) ,M (fz, z, t)} .
Thus

M (fz, z, qt) ≥ min {M (gz, z, t) ,M (fz, z, t)} (13)

Similarly, we can show that

M (gz, z, qt) ≥ min {M (z, fz, t) ,M (z, gz, t)} (14)

Thus from (13) and (14), we have

min {M(fz, z, qt),M(gz, z, qt)} ≥ min{M(z, fz, t),M(z, gz, t)}

which in turn yields from condition(A) that

z = fz and z = gz (15)

From (11), (12) and (15), we have

z = fz = gz = S(z, z, ..., z) = T (z, z, ..., z) (16)

Suppose there exists z′ ∈ X such that

z′ = fz′ = gz′ = S(z′, z′, ..., z′, z′) = T (z′, z′, ..., z′, z′).
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Then from (2.2.4.2) we have

M(z, z′, qt)

= M(S(z, z, ..., z, z), T (z′, z′, ..., z′, z′), qt)

≥ φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M (gz, fz′, t) ,M (fz, gz′, t) ,

M (gz, fz′, t) ,M (fz, gz′, t) ,

.......................................

M (gz, fz′, t) ,M (fz, gz′, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= φ (M(z, z′, t),M(z, z′, t), ...,M(z, z′, t))

≥M(z, z′, t)

From the condition(A), we have z′ = z.

Thus z is the unique point in X satisfying (16).

Now we give an example to illustrate our main Theorem 2.2.4.

Example 2.2.5. Let X = [0, 1], a ∗ b = ab,M(x, y, t) = e−
|x−y|
t and k = 1.

Define φ : [0, 1]2 → [0, 1] as φ(x1, x2) = min{x1, x2}. Let S, T : X2 → X and

f, g : X → X be defined as S(x, y) = 3x2+2y
72

, T (x, y) = 2x+3y2

72
, fx = x

6
and

gx = x2

4
. Now for x1, x2, y1, y2 ∈ X, we have

|S(x1, x2)− T (y1, y2)| = |3x
2
1+2x2

72
− 2y1+3y2

2

72
|

= 1
72
|3x21 − 2y1 + 2x2 − 3y22|

≤ 1
36

max{|3x21 − 2y1|, |2x2 − 3y22|}.

Now, we have

M(S(x1, x2), T (y1, y2),
1
3
t) = e

− |S(x1,x2)−T (y1,y2)|
1
3 t

≥ e
− 1

36

max{|3x2
1−2y1|,|2x2−3y22 |}

t
3

= e−
max{|3x2

1−2y1|,|2x2−3y22 |}
12t
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= e−
max{|x

2
1
4 −

y1
6 |,|

x2
6 −

y22
4 |}

t

≥ min

{
e−

|x
2
1
4 −

y1
6 |

t
, e−

|x2
6 −

y22
4 |

t

}

= min{M(gx1, fy1, t),M(fx2, gy2, t)}
= φ(M(gx1, fy1, t),M(fx2, gy2, t).

Thus (2.2.4.2) is satisfied with q = 1
3
.

One can easily verify the remaining conditions of Theorem 2.2.4.

Clearly 0 is the unique point in X satisfying (16).

Corollary 2.2.6. Let (X,M, ∗) be fuzzy metric space with the condition

(A) and S, T : X2k → X and f : X → X be mappings satisfying:

(2.2.6.1) S(X2k) ⊆ f(X), T (X2k) ⊆ f(X),

(2.2.6.2) M(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k), qt)

≥ φ (M(fx1, fy1, t),M(fx2, fy2, t), ...,M (fx2k, fy2k, t))

∀x1, x2, ..., x2k, y1, y2, ..., y2k ∈ X,∀t > 0 and 0 < q < 1,

(2.2.6.3) f(X) is a complete subspace of X.

(2.2.6.4) Either (f, S) or (f, T ) is a 2k-weakly compatible pair. Then there exists

a unique u ∈ X such that u = fu = S(u, u, ..., u, u) = T (u, u, ..., u, u).

Corollary 2.2.7. Let (X,M, ∗) be a complete fuzzy metric space with the

condition(A) and S, T : X2k → X be mappings satisfying:

(2.2.7.1) M(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k), qt)

≥ φ (M (x1, y1, t) ,M (x2, y2, t) , ...,M (x2k, y2k, t))

∀ x1, x2, ..., x2k, y1, y2, ..., y2k ∈ X,∀ t > 0 and 0 < q < 1.
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Then there exists a unique u ∈ X such that u = S(u, u, ..., u) = T (u, u, ..., u).

This part of the work was published in ‘Advances in Analysis’,

Vol.2, No. 3, July 2017, pp 143-150.
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SECTION 2.3: COINCIDENCE FIXED POINT THEOREMS FOR

TWO PAIRS OF HYBRID MAPPINGS IN COMPLEX

VALUED METRIC SPACES

In this section, we generalize the Theorem of Azam et al.[4] for two pairs of

hybrid mappings using S-weakly commuting in complex valued metric spaces.

In 1969, Nadler [83] introduced the study of fixed points for multi-valued

contraction mapping. Later many authors, for example [2, 5, 24, 38, 41, 52, 54,

56, 57, 58, 59, 60, 64, 86] proved fixed point results in different types of general-

ized metric spaces.

Recently Azam et al.[4] proved the following theorem.

Theorem 2.3.1.(Azam et al.[4]): Let (X, d) be a complete complex-valued

metric space and let S, T : X → CB(X) be multi-valued mappings with g.l.b

property such that

(2.3.1.1) ad(x, Ty) + bd(y, Sx) + cd(x,Ty)d(y,Sx)
1+d(x,y)

∈ s(Sx, Ty)

for all x, y ∈ X and a+ b+ c < 1

Then S and T have a common fixed point.

In this section using f is S-weakly commuting we prove a coincidence point

theorem for two pairs of hybrid mappings in complex valued metric spaces.

Our theorem is generalization of Theorem 2.3.1 of Azam et al. [4].

In this section we need the following notations of Ahmad et al. [38].

Let (X, d) be a complex valued metric space. We denote

s(z1) = {z2 ∈ C : z1 � z2} for z1 ∈ C and

s(a,B) =
⋃

b∈B

s(d(a, b)) =
⋃

b∈B

{z ∈ C : d(a, b) � z} for a ∈ X and B ∈ C(X).

For A,B ∈ C(X), we denote
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s(A,B) =

( ⋂
a∈A

s(a,B)

)
∩
( ⋂

b∈B

s(b, A)

)
.

Theorem 2.3.2. Let (X, d) be a complex valued metric space.

Let S, T : X → CB(X) be multi valued mappings f, g : X → X satisfying

(2.3.2.1) Sx ⊆ g(X), Tx ⊆ f(X),∀ x ∈ X,

(2.3.2.2) ad(fx, Ty) + bd(gy, Sx)+ cd(fx,Ty)d(gy,Sx)
1+d(fx,gy)

∈ s(Sx, Ty)

for all x, y ∈ X and a, b, c ∈ R+ such that 2a+ 2b < 1,

(2.3.2.3) f is S-weakly commuting and g is T -weakly commuting,

(2.3.2.4) f(X) is complete.

Then (f, S) and (g, T ) have the same coincidence point.

Proof: Let x1 be an arbitrary point in X. Write y1 = fx1.

Since Sx1 ⊆ g(X), there exists x2 ∈ X such that y2 = gx2 ∈ Sx1.
From (2.3.2.2), we have

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(Sx1, Tx2).

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈
( ⋂

x∈Sx1

s(x, Tx2)

)
.

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(x, Tx2),∀x ∈ Sx1.

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(gx2, Tx2).

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ ⋃

x∈Tx2

s (d(gx2, x)).

Since Tx2 ⊆ f(X), there exists some x3 ∈ X with y3 = fx3 ∈ Tx2 such that

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
. ∈ s (d(gx2, fx3)).

Hence

d(gx2, fx3) � ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
.

d(y2, y3) � ad(y1, y3) + bd(y2, y2)+
cd(y1,y3)d(y2,y2)

1+d(y1,y2)
.
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|d(y2, y3)| ≤ a |d(y1, y2)|+ a |d(y2, y3)|.

|d(y2, y3)| ≤ a
1−a
|d(y1, y2)|. (1)

Now,

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, Tx2).

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈
( ⋂

y∈Tx2

s(Sx3, y)

)
.

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, y),∀y ∈ Tx2

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, fx3).

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ ⋃

y∈Sx3

s (d(y, fx3)).

Since Sx3 ⊆ g(X), there exists some x4 ∈ X with y4 = gx4 ∈ Sx3 such that

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s (d(gx4, fx3)).

Hence

d(gx4, fx3) � ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
.

d(y3, y4) � ad(y3, y3) + bd(y2, y4)+
cd(y3,y3)d(y2,y4)

1+d(y3,y2)
.

|d(y3, y4)| ≤ b |d(y2, y3)|+ b |d(y3, y4)|∣∣∣d(y3,y4)∣∣∣ ≤ b
1−b

∣∣∣d(y2,y3)∣∣∣. (2)

putting h = max
{

a
1−a

, b
1−b

}
and we continuing in this way, we get∣∣d(yn, yn+1)

∣∣ ≤ h
∣∣d(yn−1, yn)

∣∣
≤ h2

∣∣d(yn−2, yn−1)
∣∣

.

.

.

≤ hn−1 |d(y1, y2)|

.

Now for m > n consider
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∣∣∣d(yn,ym)
∣∣∣ ≤ ∣∣∣d(yn,yn+1) + d(yn+1,yn+2) + ......+ d(ym−1,ym)

∣∣∣
≤ hn−1 + hn + ....+ hm−2

∣∣∣d(y1,y2)∣∣∣
≤
[

hn−1

1−h

]
→ 0 as m, n→∞.

Thus {yn} is a Cauchy sequence in X.

Since f(X) is complete, {y2n+1} = {fx2n+1} is Cauchy, it follows that {y2n+1}
converges to u ∈ f(X). Hence there exists v ∈ X such that u = fv.

Since {yn} is a Cauchy sequence and {y2n+1} → u it follow that {y2n} → u.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, Tx2n).

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈
( ⋂

y∈Tx2n

s(Sv, y)

)
.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, y),∀y ∈ Tx2n.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, y2n+1).

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ ⋃

u1∈Sv

s (d(u1, y2n+1)).

There exists vn ∈ Sv such that

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s (d(vn, y2n+1)

)
.

Therefore d(vn, y2n+1) � ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
.

Using g.l.b.property, we get

d(vn, y2n+1) � ad(fv, y2n+1) + bd(y2n, vn)+
cd(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

Using triangular inequality, we obtain

d(vn, y2n+1) � ad(fv, y2n+1) + bd(y2n, y2n+1) + bd(y2n+1, vn)

+
cd(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

d(vn, y2n+1) � a
1−b

d(fv, y2n+1) + b
1−b

d(y2n, y2n+1) + c
1−b

d(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)

Now consider

d(fv, vn) � d(fv, y2n+1) + d(y2n+1, vn)
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� d(fv, y2n+1) + a
1−b

d(fv, y2n+1) + b
1−b

d(y2n, y2n+1) + c
1−b

d(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)

|d(fv, vn)| ≤ |d(fv, y2n+1)|+ a
1−b
|d(fv, y2n+1)|+ b

1−b
|d(y2n, y2n+1)|

+ c
1−b

|d(fv,y2n+1)||d(y2n,vn)|
|1+d(fv,y2n)| .

Letting n→∞ , we obtain

|d(fv, vn)| → 0 as n → ∞. By Lemma 1.5.2(Ch-1), we have vn → fv as

n→∞.

Since Sv is closed and {vn} ⊆ Sv, it follows that fv ∈ Sv.

Now u = fv ∈ Sv and Sv ⊆ g(X) it follows that u = fv = gw for some

w ∈ X.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(Sx2n−1, Tw).

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

∈
( ⋂

y1∈Sx2n−1

s(y1, Tw)

)
.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

∈ s(y1, Tw),∀y1 ∈ Sx2n−1.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(y2n, Tw).

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)

∈ ⋃
u1∈Tw

s (d(y2n, u
1)).

There exists some wn ∈ Tw such that

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(d(y2n, wn)).

d(y2n, wn) � ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

Using g.l.b.property, we obtain

d(y2n, wn) � ad(y2n−1, wn) + bd(gw, y2n)+ cd(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

Using triangular inequality, we have
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d(y2n, wn) � ad(y2n−1, y2n) + ad(y2n, wn) + bd(gw, y2n)+ cd(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

d(y2n, wn) � a
1−a

d(y2n−1, y2n) + b
1−a

d(gw, y2n) + c
1−a

d(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

Now consider

d(gw,wn)

� d(gw, y2n) + d(y2n, wn).

� d(gw, y2n) + a
1−a

d(y2n−1, y2n) + b
1−a

d(gw, y2n) + c
1−a

d(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

|d(gw,wn)| ≤ |d(gw, y2n)|+ a
1−a
|d(y2n−1, y2n)|+ b

1−a
|d(gw, y2n)|

+ c
1−a

|d(y2n−1,wn)||d(gw,y2n)|
|1+d(y2n−1,gw)| .

Letting n→∞ we get

|d(gw,wn)| → 0 as n→∞.

By Lemma 1.5.2(Ch-1), we have wn → gw as n→∞.

Since Tw is closed and {wn} ⊆ Tw, it follows that gw ∈ Tw.

We have u = fv = gw ∈ Tw.

Since f is S-weakly commuting and g is T -weakly commuting we have

f 2v ∈ Sfv ⇒ fu ∈ Su and g2w ∈ Tgw ⇒ gu ∈ Tu.
Thus the pairs (f, S) and (g, T ) have the same coincidence point.

This part of the work was published in ”Asia Pacific Journal of

Mathematics”, Vol.3, No.2, 2016, pp 136-143.
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CHAPTER 3

COUPLED AND COINCIDENCE POINT THEOREMS IN C∗-

ALGEBRA VALUED FUZZY SOFT METRIC SPACES

We divide Chapter 3 into two sections, namely, Section 3.1 and Section

3.2. The main aim of the chapter is to prove common coupled fixed point and

coincidence point theorems in C∗ -algebra valued Fuzzy soft metric spaces.

SECTION 3.1: COUPLED FIXED POINT RESULTS AND APPLICATIONS

IN C∗ - ALGEBRA VALUED FUZZY SOFT METRIC SPACES

In this section, we establish the existence and uniqueness of common cou-

pled fixed point results for three mappings in C∗- Algebra valued Fuzzy Soft

metric spaces. Moreover, we give an illustration which presents the applicabil-

ity of the achieved result and also we provide application to Integral Equations.

Definition 3.1.1.(R.P.Agarwal et al.[79]): Let (Ẽ, C̃, d̃c∗) be a C∗-algebra

valued fuzzy soft metric space. Let S : Ẽ × Ẽ → Ẽ be a mapping, an element

(Fe1 , Ge1) ∈ Ẽ × Ẽ is called coupled fixed point of S if S(Fe1 , Ge1) = Fe1 and

S(Ge1 , Fe1) = Ge1 .

Definition 3.1.2.(R.P.Agarwal et al.[79]): Let Ẽ be absolute fuzzy soft

set. An element

(Fe1 , Ge1) ∈ Ẽ × Ẽ is called

(i) a coupled coincidence point of mappings S : Ẽ× Ẽ → Ẽ and f : Ẽ → Ẽ

if fFe1 = S(Fe1 , Ge1) and fGe1 = S(Ge1 , Fe1),

(ii) a common coupled fixed point of mappings S : Ẽ×Ẽ → Ẽ and f : Ẽ → Ẽ

if Fe1 = fFe1 = S(Fe1 , Ge1) and Ge1 = fGe1 = S(Ge1 , Fe1).
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Definition 3.1.3.(R.P.Agarwal et al.[79]): Let Ẽ be absolute fuzzy soft

set and S : Ẽ×Ẽ → Ẽ and f : Ẽ → Ẽ. Then {S, f} is said to be ω-compatible

pairs if

f (S(Fe1 , Ge1)) = S(fFe1 , fGe1) and f (S(Ge1 , Fe1)) = S(fGe1 , fFe1).

Theorem 3.1.4. Let (Ẽ, C̃, d̃c∗) be a C∗-algebra valued fuzzy soft metric

space.Suppose S : Ẽ × Ẽ → Ẽ and f, g : Ẽ → Ẽ be satisfying,

(3.1.4.1) S(Ẽ × Ẽ) ⊆ g(Ẽ) and S(Ẽ × Ẽ) ⊆ f(Ẽ),

(3.1.4.2) {S, f} and {S, g} are ω-compatible pairs,

(3.1.4..3) one of f(Ẽ) or g(Ẽ) is complete C∗-algebra valued fuzzy soft metrics of

Ẽ,

(3.1.4.4) d̃c∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) � ã�d̃c∗(fFe1 , gFe2)ã + ã�d̃c∗(fGe1 , gGe2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ||√2ã|| < 1. Then S, f and g have a unique common coupled

fixed point in Ẽ× Ẽ. Moreover, S, f and g have a unique common fixed point

in Ẽ.

Proof: Let Fe0 , Ge0 ∈ Ẽ. From (3.1.4.1) we can construct the sequences

{Fe2n}2n=1∞, {Ge2n}2n=1∞, {Ie2n}2n=1∞, {Je2n}2n=1∞ such that

S(Fe2n , Ge2n) = fFe2n+1 = Ie2n S(Fe2n+1 , Ge2n+1) = gFe2n+2 = Ie2n+1

S(Ge2n , Fe2n) = fGe2n+1 = Je2n S(Ge2n+1 , Fe2n+1) = gGe2n+2 = Je2n+1

for n = 0, 1, 2, . . .

Notices that in C∗-algebra, if ã, b̃ ∈ C̃+ and ã � b̃, then for any x̃ ∈ C̃+
both x̃�ãx̃ and x̃�b̃x̃ are positive elements and x̃�ãx̃ � x̃�b̃x̃.
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From (3.1.4.4), we get

d̃c∗(Ie2n+1 , Ie2n+2) = d̃c∗
(
S(Fe2n+1 , Ge2n+1), S(Fe2n+2 , Ge2n+2)

)
� ã�d̃c∗(fFe2n+1 , gFe2n+2)ã+ ã�d̃c∗(fGe2n+1 , gGe2n+2)ã

� ã�
(
d̃c∗(Ie2n , Ie2n+1) + d̃c∗(Je2n , Je2n+1)

)
ã (3.1.4.5)

Similarly,

d̃c∗(Je2n+1 , Je2n+2) = d̃c∗
(
S(Ge2n+1 , Fe2n+1), S(Ge2n+2 , Fe2n+2)

)
� ã�d̃c∗(fGe2n+1 , gGe2n+2)ã+ ã�d̃c∗(fFe2n+1 , gFe2n+2)ã

� ã�
(
d̃c∗(Je2n , Je2n+1) + d̃c∗(Ie2n , Ie2n+1)

)
ã (3.1.4.6)

Let κ2n+1 = d̃c∗(Ie2n+1 , Ie2n+2) + d̃c∗(Je2n+1 , Je2n+2)

and now from (3.1.4.5 ) and (3.1.4.6 ), we have

κ2n+1 = d̃c∗(Ie2n+1 , Ie2n+2) + d̃c∗(Je2n+1 , Je2n+2)

� ã�
(
d̃c∗(Ie2n , Ie2n+1) + d̃c∗(Je2n , Je2n+1)

)
ã

+ã�
(
d̃c∗(Je2n , Je2n+1) + d̃c∗(Ie2n , Ie2n+1)

)
ã

� (
√

2ã)�κ2n(
√

2ã)

...

� [(√2ã)�
]2n+1

κ0(
√

2ã)2n+1

Now, we can obtain for any n ∈ N

κn = d̃c∗(Ien , Ien+1) + d̃c∗(Jen , Jen+1)

� (
√

2ã)�κn−1(
√

2ã)

...

� [(√2ã)�
]n
κ0(
√

2ã)n

If κ0 = 0̃C̃ , then from Definition 1.6.1(Ch-1) of M1 we know (Ie0 , Je0) is a

coupled fixed point of S, f and g.
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Now letting 0̃C̃ � κ0, we get for any n ∈ N , for any p ∈ N and using triangle

inequality

d̃c∗(Ie2n+p , Ie2n) � d̃c∗(Ie2n+p , Ie2n+p−1)+d̃c∗(Ie2n+p−1 , Ie2n+p−2)+· · ·+d̃c∗(Ie2n+1 ,e2n ),

d̃c∗(Je2n+p , Je2n) � d̃c∗(Je2n+p , Je2n+p−1)+d̃c∗(Je2n+p−1 , Je2n+p−2)+· · ·+d̃c∗(Je2n+1 , Je2n).

Consequently,

d̃c∗(Ie2n+p , Ie2n) + d̃c∗(Je2n+p , Je2n) � κ2n+p−1 + κ2n+p−2 + · · ·+ κ2n

�
2n+p−1∑
m=2n

[
(
√

2ã)�
]m

κ0(
√

2ã)m

and then

||d̃c∗(Ie2n+p , Ie2n) + d̃c∗(Je2n+p , Je2n)|| ≤ κ2n+p−1 + κ2n+p−2 + · · ·+ κ2n

≤
2n+p−1∑
m=2n

||√2ã||2mκ0 ≤
∞∑

m=n

||√2ã||2mκ0

= ||√2ã||2n
1−||√2ã||2κ0 → 0 as n→∞

which together with d̃c∗(Ie2n+p , Ie2n) � d̃c∗(Ie2n+p , Ie2n) + d̃c∗(Je2n+p , Je2n) and

d̃c∗(Je2n+p , Je2n) � d̃c∗(Ie2n+p , Ie2n) + d̃c∗(Je2n+p , Je2n) implies {Ie2n} and {Je2n}
are Cauchy sequences in Ẽ with respect to C̃.

It follows that {Ie2n+1} and {Je2n+1} are also Cauchy sequences in Ẽ with

respect to C̃.

Thus {Ien} and {Jen} are Cauchy sequences in (Ẽ, C̃, d̃c∗).

Suppose g(Ẽ) is complete subspace of (Ẽ, C̃, d̃c∗).

Then the sequences {Ien} and {Jen} are converge to Ie′ , Je′ respectively in

g(Ẽ).

Thus there exist Fe′ , Ge′ in g(Ẽ) Such that

limn→∞ Ien = Ie′ = gFe′ and limn→∞ Jen = Je′ = gGe′ (3.1.4.7)
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We now claim that S(Fe′ , Ge′) = Ie′ and S(Ge′ , Fe′) = Je′ .

From (3.1.4.4 ) and using the triangular inequality, we have

0̃C̃ � d̃c∗(Ie′ , S(Fe′ , Ge′))

� d̃c∗(Ie′ , Ie2n+1) + d̃c∗(Ie2n+1 , S(Fe′ , Ge′))

� d̃c∗(Ie′ , Ie2n+1) + d̃c∗(S(Fe2n+1 , Ge2n+1), S(Fe′ , Ge′))

� d̃c∗(Ie′ , Ie2n+1) + ã�d̃c∗(fFe2n+1 , gFe′)ã+ ã� d̃c∗(fGe2n+1 , gGe′)ã

� d̃c∗(Ie′ , Ie2n+1) + ã�d̃c∗(Ie2n , Ie′)ã+ ã�d̃c∗(Je2n , Je′)ã.

Taking the limit as n→∞ in the above relation, we obtain

d̃c∗(Ie′ , S(Fe′ , Ge′)) = 0̃C̃ and hence S(Fe′ , Ge′) = Ie′ .

Similarly, we prove S(Ge′ , Fe′) = Je′ .

Therefore, it follows S(Fe′ , Ge′) = Ie′ = gIe′ and S(Ge′ , Fe′) = Je′ = gJe′ .

Since {S, g} is ω-compatible pair,

we have S(Ie′ , Je′) = gIe′ and S(Je′ , Ie′) = gJe′ .

Now to prove that gIe′ = Ie′ and gJe′ = Je′ .

0̃C̃ � d̃c∗
(
Ie2n+1 , gIe′

)
� d̃c∗

(
S
(
Fe2n+1 , Ge2n+1

)
, S (Ie′ , Je′)

)
� ã�d̃c∗

(
fFe2n+1 , gIe′

)
ã+ ã�d̃c∗

(
fGe2n+1 , gJe′

)
ã

� ã�d̃c∗ (Ie2n , gIe′) ã+ ã�d̃c∗ (Je2n , gJe′) ã.

Taking the limit as n→∞ in the above relation, we obtain

d̃c∗ (Ie′ , gIe′) � ã�d̃c∗ (Ie′ , gIe′) ã+ ã�d̃c∗ (Je′ , gJe′) ã. (3.1.4.8)

Similarly, we have

d̃c∗ (Je′ , gJe′) � ã�d̃c∗ (Je′ , gJe′) ã+ ã�d̃c∗ (Ie′ , gIe′) ã. (3.1.4.9)
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From (3.1.4.8 ) and (3.1.4.9), we have

0̃C̃ � d̃c∗(Ie′ , gIe′) + d̃c∗(Je′ , gJe′)

� (
√

2ã�)
(
d̃c∗(Ie′ , gIe′) + d̃c∗(Je′ , gJe′)

)
(
√

2ã).

Therefore,

0̃ ≤ ||d̃c∗(Ie′ , gIe′) + d̃c∗(Je′ , gJe′)||
≤ ||(√2ã�)

(
d̃c∗(Ie′ , gIe′) + d̃c∗(Je′ , gJe′)

)
(
√

2ã)||
≤ ||(√2ã)||2||d̃c∗(Ie′ , gIe′) + d̃c∗(Je′ , gJe′)||.

Since ||(√2ã)|| < 1, from above we have ||d̃c∗(Ie′ , gIe′) + d̃c∗(Je′ , gJe′)|| = 0.

Hence gIe′ = Ie′ and gJe′ = Je′ .

Therefore, S(Ie′ , Je′) = gIe′ = Ie′ and S(Je′ , Ie′) = gJe′ = Je′ .

Thus (Ie′ , Je′) is common coupled fixed point of S and g.

Since S(Ẽ × Ẽ) ⊆ f(Ẽ). So there exist Ke′ , Le′ ∈ Ẽ such that

S(Ie′ , Je′) = Ie′ = fKe′ and S(Je′ , Ie′) = Je′ = fLe′ .

Now from (3.1.4.4), we have

0̃C̃ � d̃c∗(S(Ke′ , Le′), Ie′)

� d̃c∗(S(Ke′ , Le′), S((Ie′ , Je′))

� ã�d̃c∗(fKe′ , gIe′)ã+ ã�d̃c∗(fLe′ , gJe′)ã

� ã�d̃c∗(Ie′ , Ie′)ã+ ã�d̃c∗(Je′ , Je′)ã.

We have d̃c∗(S(Ke′ , Le′), Ie′) = 0, which means that Ie′ = S(Ke′ , Le′).

Similarly we can prove that S(Le′ , Ke′) = Je′ .

Since {S, f} is ω-compatible pair, we have S(Ie′ , Je′) = fIe′ and

S(Je′ , Ie′) = fJe′ .
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Now we prove that fIe′ = Ie′ and fJe′ = Je′ .

0̃C̃ � d̃c∗(fIe′ , Ie′) � d̃c∗(S((Ie′ , Je′)), S(Ie′ , Je′))

� ã�d̃c∗(fIe′ , gIe′)ã+ ã�d̃c∗(fJe′ , gJe′)ã

� ã�d̃c∗(fIe′ , Ie′)ã+ ã�d̃c∗(fJe′ , Je′)ã (3.1.4.10)

and

0̃C̃ � d̃c∗(fJe′ , Je′) � d̃c∗(S((Je′ , Ie′)), S(Je′ , Ie′))

� ã�d̃c∗(fJe′ , gJe′)ã+ ã�d̃c∗(fIe′ , gIe′)ã

� ã�d̃c∗(fJe′ , Je′)ã+ ã�d̃c∗(fIe′ , Ie′)ã. (3.1.4.11)

From (3.1.4.10) and (3.1.4.11), we have

0̃C̃ � d̃c∗(fIe′ , Ie′) + d̃c∗(fJe′ , Je′)

� (
√

2ã�)
(
d̃c∗(fIe′ , Ie′) + d̃c∗(fJe′ , Je′)

)
(
√

2ã).

Therefore,

0̃ ≤ ||d̃c∗(fIe′ , Ie′) + d̃c∗(fJe′ , Je′)||
≤ ||(√2ã�)

(
d̃c∗(fIe′ , Ie′) + d̃c∗(fJe′ , Je′)

)
(
√

2ã)||
≤ ||(√2ã)||2||d̃c∗(fIe′ , Ie′) + d̃c∗(fJe′ , Je′)||.

Since ||(√2ã)|| < 1, from above we have ||d̃c∗(fIe′ , Ie′) + d̃c∗(fJe′ , Je′)|| = 0.

Hence fIe′ = Ie′ and fJe′ = Je′

Therefore, we have S(Ie′ , Je′) = fIe′ = Ie′ and S(Je′ , Ie′) = fJe′ = Je′ .

Thus (Ie′ , Je′) is common coupled fixed point of S, f and g.

In the following we show that the uniqueness of common coupled fixed point

in Ẽ × Ẽ. First we assume that there is another coupled fixed point (Ie′′ , Je′′)

of S, f and g in Ẽ × Ẽ.
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From (3.1.4.4), we have

d̃c∗(Ie′ , Ie′′) � d̃c∗(S(Ie′ , Je′), S(Ie′′ , Je′′))

� ã�d̃c∗(fIe′ , gIe′′)ã+ ã�d̃c∗(gJe′ , gJe′′)ã

� ã�d̃c∗(Ie′ , Ie′′)ã+ ã�d̃c∗(Je′ , Je′′)ã (3.1.4.12)

and

d̃c∗(Je′ , Je′′) � d̃c∗(S(Je′ , Ie′), S(Je′′ , Ie′′))

� ã�d̃c∗(fJe′ , gJe′′)ã+ ã�d̃c∗(gIe′ , gIe′′)ã

� ã�d̃c∗(Je′ , Je′′)ã+ ã�d̃c∗(Ie′ , Ie′′)ã. (3.1.4.13)

From (3.1.4.12 ) and (3.1.4.13 ), we have

d̃c∗(Ie′ , Ie′′) + d̃c∗(Je′ , Je′′) � (
√

2ã)�
(
d̃c∗(Ie′ , Ie′′) + d̃c∗(Je′ , Je′′)

)
(
√

2ã).

It follows that

||d̃c∗(Ie′ , Ie′′) + d̃c∗(Je′ , Je′′)|| ≤ ||
√

2ã||2||d̃c∗(Ie′ , Ie′′) + d̃c∗(Je′ , Je′′)||.

Since ||√2ã|| < 1, from above we have ||d̃c∗(Ie′ , Ie′′) + d̃c∗(Je′ , Je′′)|| = 0.

Hence we get (Ie′ , Je′) = (Ie′′ , Je′′) which means that the coupled fixed point is

unique.

In order to prove that S, f and g have a unique fixed point, we only have to

prove Ie′ = Je′ . We have

d̃c∗(Ie′ , Je′) = d̃c∗(S(Ie′ , Je′), S(Je′ , Ie′)) � ã�d̃c∗(fIe′ , gJe′)ã+ ã�d̃c∗(fJe′ , gIe′)ã

� ã�d̃c∗(Ie′ , Je′)ã+ ã�d̃c∗(Je′ , Ie′)ã

then

||d̃c∗(Ie′ , Je′)|| ≤ ||ã||2||d̃c∗(Ie′ , Je′)||+ ||ã||2||d̃c∗(Je′ , Ie′)||
≤ 2||ã||2||d̃c∗(Ie′ , Je′)||.

61



It follows from the fact ||ã|| < 1√
2

that ||d̃c∗(Ie′ , Je′)|| = 0, thus Ie′ = Je′ . which

means that S, f and g have a unique fixed point in Ẽ.

Corollary 3.1.5. Let (Ẽ, Ã, d̃c∗) be a complete C∗-algebra valued fuzzy

soft metric space. Suppose S : Ẽ × Ẽ → Ẽ satisfies

(3.1.5.1) d̃c∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) � ã�d̃c∗(Fe1 , Fe2)ã+ ã�d̃c∗(Ge1 , Ge2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ, where ã ∈ C̃ with ||√2ã|| < 1.

Then S has a unique fixed point in Ẽ.

Example 3.1.6. Let E = {e1, e2, e3}, U = {a, b, c, d} and C and D are

two subset of E

where C = {e1, e2, e3}, D = {e1, e2}. Define fuzzy soft set as,

(FE, C) =

⎧⎪⎨
⎪⎩

e1 = {a0.3, b0.2, c0.4, d0.1}, e2 = {a0.5, b0.4, c0.6, d0.3},
e3 = {a0.7, b0.8, c0.9, d0.5}

⎫⎪⎬
⎪⎭

(GE, D) = {e1 = {a0.4, b0.6, c0.3, d0.2}, e2 = {a0.8, b0.9, c0.5, d0.7}}

Fe1 = μFe1
= {a0.3, b0.2, c0.4, d0.1}, Fe2 = μFe2

= {a0.5, b0.4, c0.6, d0.3}

Fe3 = μFe3
= {a0.7, b0.8, c0.9, d0.5}

Ge1 = μGe1
= {a0.4, b0.6, c0.3, d0.2}, Ge2 = μGe2

= {a0.8, b0.9, c0.5, d0.7}

and FSC(FE) = {Fe1 , Fe2 , Fe3 , Ge1 , Ge2} ,

let Ẽ be absolute fuzzy soft set, that is Ẽ(e) = 1̃ for all e ∈ E,

and C̃ = M2(R(C)∗), be the C∗-algebra.

Define d̃c∗ : Ẽ × Ẽ → C̃ by
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d̃c∗(Fe1 , Fe2) = (Inf{|Fe1(a)− Fe2(a)|/a ∈ C}, 0),

then obviously (Ẽ, C̃, d̃c∗) is a complete C∗-algebra valued

fuzzy soft metric space.

We define S : Ẽ × Ẽ → Ẽ by S(Fe1 , Ge1)(a) =
F 2
e1
+G2

e1

4
,

f : Ẽ → Ẽ by fFe1 =
Fe1
3

and g : Ẽ → Ẽ by gFe1 =
Fe1
2

for all a ∈ U and

Fe1 , Ge1 ∈ Ẽ. Notice that,fFe1 =
Fe1
3

= {0.10, 0.06, 0.13, 0.03} and

gFe2 =
Fe1
2

= {0.25, 0.2, 0.3, 0.15} .
Thus,

Inf{|μa
fFe1

(s)− μa
gFe2

(s)|/s ∈ C} = Inf{0.15, 0.14, 0.17, 0.12} = 0.12

Hence d̃c∗(fFe1 , gFe2) =

⎡
⎢⎣ 0.12 0

0 0.12

⎤
⎥⎦

also, fGe1 =
Ge1

3
= {0.13, 0.2, 0.1, 0.06} and

gGe2 =
Ge1

2
= {0.4, 0.45, 0.25, 0.35} .

Thus,

Inf{|μa
fGe1

(s)− μa
gGe2

(s)|/s ∈ C} = Inf{0.27, 0.25, 0.15, 0.29} = 0.15

and d̃c∗(fGe1 , gGe2) =

⎡
⎢⎣ 0.15 0

0 0.15

⎤
⎥⎦

Moreover, S(Fe1 , Ge1)(a) =
F 2
e1
+G2

e1

4
= {0.062, 0.1, 0.062, 0.012}

and S(Fe2 , Ge2)(a) =
F 2
e2
+G2

e2

4
= {0.222, 0.242, 0.152, 0.145}

Then

d̃c∗(S(Fe1 , Ge1), S(Fe2 , Ge2))

=

⎡
⎢⎣ 0.09 0

0 0.09

⎤
⎥⎦

�

⎡
⎢⎣

√
3
3

0

0
√
3
3

⎤
⎥⎦
⎡
⎢⎣ 0.27 0

0 0.27

⎤
⎥⎦
⎡
⎢⎣

√
3
3

0

0
√
3
3

⎤
⎥⎦
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�

⎡
⎢⎣

√
3
3

0

0
√
3
3

⎤
⎥⎦
⎛
⎜⎝
⎡
⎢⎣ 0.12 0

0 0.12

⎤
⎥⎦+

⎡
⎢⎣ 0.15 0

0 0.15

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎣

√
3
3

0

0
√
3
3

⎤
⎥⎦

� c̃∗
(
d̃c∗(fFe1 , gFe2) + d̃c∗(fGe1 , gGe2)

)
c̃.

Here c̃ =

⎡
⎢⎣

√
3
3

0

0
√
3
3

⎤
⎥⎦ with ||c̃|| = 1√

3
< 1√

2

Therefore, all the conditions of Theorem (3.1.4) satisfied.

Hence S, f and g have a unique coupled fixed point.

Theorem 3.1.7. Let (Ẽ, C̃, d̃c∗) be a C∗-algebra valued fuzzy soft metric

space.

Suppose S : Ẽ × Ẽ → Ẽ and f, g : Ẽ → Ẽ be satisfying

(3.1.7.1) S(Ẽ × Ẽ) ⊆ g(Ẽ) and S(Ẽ × Ẽ) ⊆ f(Ẽ),

(3.1.7.2) {S, f} and {S, g} are ω-compatible pairs,

(3.1.7.3) one of f(Ẽ) or g(Ẽ) is complete C∗-algebra valued fuzzy soft metrics of

Ẽ,

(3.1.7.4) d̃c∗ (S(Fe1 , Ge1), S(Fe2 , Ge2))

� ãd̃c∗(S(Fe1 , Ge1), fFe1) + ãd̃c∗(S(Fe2 , Ge2), gFe2)

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ||ã|| < 1
2
. Then S, f and g have a unique common coupled

fixed point in Ẽ× Ẽ. Moreover, S, f and g have a unique common fixed point

in Ẽ.

Proof: Similar to Theorem 3.1.4, construct four sequences {Fe2n}, {Ge2n},
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{Ie2n}, {Je2n} in Ẽ such that

S(Fe2n , Ge2n) = fFe2n+1 = Ie2n S(Fe2n+1 , Ge2n+1) = gFe2n+2 = Ie2n+1

S(Ge2n , Fe2n) = fGe2n+1 = Je2n S(Ge2n+1 , Fe2n+1) = gGe2n+2 = Je2n+1

for n = 0, 1, 2, . . .

From (3.1.7.4 ), we have

d̃c∗(Ie2n+1 , Ie2n+2) = d̃c∗
(
S(Fe2n+1 , Ge2n+1), S(Fe2n+2 , Ge2n+2)

)
� ãd̃c∗(S(Fe2n+1 , Ge2n+1), fFe2n+1) + ãd̃c∗(S(Fe2n+2 , Ge2n+2), gFe2n+2)

� ãd̃c∗(Ie2n+1 , Ie2n) + ãd̃c∗(Ie2n+2 , Ie2n+1).

Therefore, (ĨC̃ − ã)d̃c∗(Ie2n+1 , Ie2n+2) � ãd̃c∗(Ie2n+1 , Ie2n)

and similarly, (ĨC̃ − ã)d̃c∗(Je2n+1 , Je2n+2) � ãd̃c∗(Je2n+1 , Je2n).

Since a ∈ C̃ ′
+ with ||ã|| < 1

2
, we have ĨC̃ − ã is invertible and

(ĨC̃ − ã)−1ã ∈ C̃ ′
+.

Therefore,

d̃c∗(Ie2n+1 , Ie2n+2) � (ĨC̃ − ã)−1ãd̃c∗(Ie2n+1 , Ie2n)

d̃c∗(Je2n+1 , Je2n+2) � (ĨC̃ − ã)−1ãd̃c∗(Je2n+1 , Je2n).

Then

||d̃c∗(Ie2n+1 , Ie2n+2)|| ≤ ||(ĨC̃ − ã)−1ã||||d̃c∗(Ie2n+1 , Ie2n)||
||d̃c∗(Je2n+1 , Je2n+2)|| ≤ ||(ĨC̃ − ã)−1ã||||d̃c∗(Je2n+1 , Je2n)||.

It follows from the fact

||(ĨC̃ − ã)−1ã|| ≤ ||(ĨC̃ − ã)−1||||ã|| ≤
∞∑

m=o

||ã||m||ã|| = ||ã||
1−||ã|| < 1

that is {Ie2n}, {Je2n} are Cauchy sequences in Ẽ with respect to C̃. It follows

that {Ie2n+1} and {Je2n+1} are also Cauchy sequences in Ẽ with respect to C̃.

Thus {Ien} and {Jen} are Cauchy sequences in (Ẽ, C̃, d̃c∗).
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Suppose g(Ẽ) is complete subspace of (Ẽ, C̃, d̃c∗).

Then the sequences {Ien} and {Jen} are converge to Ie′ , Je′ respectively in

g(Ẽ). Thus there exist Fe′ , Ge′ in g(Ẽ).

Such that

limn→∞ Ien = Ie′ = gFe′ and limn→∞ Jen = Je′ = gGe′ .

We now claim that S(Fe′ , Ge′) = Ie′ and S(Ge′ , Fe′) = Je′ .

From (3.1.7.4 ) and using the triangular inequality, we have

0̃C̃ � d̃c∗(Ie′ , S(Fe′ , Ge′))

� d̃c∗(Ie′ , Ie2n+1) + d̃c∗(Ie2n+1 , S(Fe′ , Ge′))

� d̃c∗(Ie′ , Ie2n+1) + d̃c∗(S(Fe2n+1 , Ge2n+1), S(Fe′ , Ge′))

� d̃c∗(Ie′ , Ie2n+1) + ãd̃c∗(S(Fe2n+1 , Ge2n+1), fFe2n+1) + ãd̃c∗(S(Fe′ , Ge′), gFe′)

� d̃c∗(Ie′ , Ie2n+1) + ãd̃c∗(Ie2n+1 , Ie2n) + ãd̃c∗(S(Fe′ , Ge′), Ie′)

� d̃c∗(Ie′ , Ie2n+1) + ãd̃c∗(Ie2n+1 , Ie2n) + ãd̃c∗(Ie′ , S(Fe′ , Ge′)).

Which implies that

d̃c∗(S(Fe′ , Ge′), Ie′) � (ĨC̃ − ã)−1ãd̃c∗(Ie2n+1 , Ie2n) + (ĨC̃ − ã)−1d̃c∗(Ie2n+1 , Ie′).

Taking the limit as n→∞ in the above relation, we obtain

d̃c∗(S(Fe′ , Ge′), Ie′) = 0̃C̃ and hence S(Fe′ , Ge′) = Ie′ .

Similarly, we prove S(Ge′ , Fe′) = Je′ .

Therefore, it follows S(Fe′ , Ge′) = Ie′ = gIe′ and S(Ge′ , Fe′) = Je′ = gJe′ .

Since {S, g} is ω-compatible pair, we have S(Ie′ , Je′) = gIe′

and S(Je′ , Ie′) = gJe′ .

Now to prove that gIe′ = Ie′ and gJe′ = Je′ .
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From (3.1.7.4 ) and using the triangular inequality, we have

0̃C̃ � d̃c∗(Ie′ , gIe′)

� d̃c∗(Ie′ , Ie2n+1) + d̃c∗(Ie2n+1 , gIe′)

� d̃c∗(Ie′ , Ie2n+1) + d̃c∗(S(Fe2n+1 , Ge2n+1), S(Ie′ , Je′))

� d̃c∗(Ie′ , Ie2n+1) + ãd̃c∗(S(Fe2n+1 , Ge2n+1), fFe2n+1) + ãd̃c∗(S(Ie′ , Je′), gIe′)

� d̃c∗(Ie′ , Ie2n+1) + ãd̃c∗(Ie2n+1 , Ie2n) + ãd̃c∗(Ie′ , gIe′).

Which implies

0̃C̃ � d̃c∗(Ie′ , gIe′) � (ĨC̃ − ã)−1d̃c∗(Ie′ , Ie2n+1) + (ĨC̃ − ã)−1ãd̃c∗(Ie2n+1 , Ie2n).

Taking the limit as n→∞ in the above relation, we obtain

d̃c∗(Ie′ , gIe′) = 0C̃ which implies gIe′ = Ie′ . Similarly we can prove gJe′ = Je′ .

Therefore, S(Ie′ , Je′) = gIe′ = Ie′ and S(Je′ , Ie′) = gJe′ = Je′ .

Thus (Ie′ , Je′) is common coupled fixed point of S and g.

Since S(Ẽ × Ẽ) ⊆ f(Ẽ). So there exist Ke′ , Le′ ∈ Ẽ such that

S(Ie′ , Je′) = Ie′ = fKe′ and S(Je′ , Ie′) = Je′ = fLe′ .

Now from (3.1.7.4 ) and using the triangular inequality, we have

0̃C̃ � d̃c∗(S(Ke′ , Le′), Ie′) � d̃c∗(S(Ke′ , Le′), S(Ie′ , Je′))

� ãd̃c∗(S(Ke′ , Le′), fKe′) + ãd̃c∗(S(Ie′ , Je′), gIe′)

� ãd̃c∗(S(Ke′ , Le′), Ie′) + ãd̃c∗((Ie′ , Ie′).

We have d̃c∗(S(Ke′ , Le′), Ie′) = 0, which means that Ie′ = S(Ke′ , Le′).

Similarly, we have S(Le′ , Ke′) = Je′ .

Since {S, f} is ω-compatible pair, we have S(Ie′ , Je′) = fIe′

and S(Je′ , Ie′) = fJe′ .

Now we prove that fIe′ = Ie′ and fJe′ = Je′ .
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From (3.1.7.4 ) and using the triangular inequality, we have

0̃C̃ � d̃c∗(Ie′ , fIe′) � d̃c∗(S(Ie′ , Je′), S(Ie′ , Je′))

� ãd̃c∗(S(Ie′ , Je′), fIe′) + ãd̃c∗(S(Ie′ , Je′), gIe′)

� ãd̃c∗(Ie′ , fIe′) + ãd̃c∗(gIe′ , gIe′)

� ãd̃c∗(Ie′ , fIe′)

which means that fIe′ = Ie′ and

0̃C̃ � d̃c∗(Je′ , fJe′) � d̃c∗(S(Je′ , Ie′), S(Je′ , Ie′))

� ãd̃c∗(S(Je′ , Ie′), fJe′) + ãd̃c∗(S(Je′ , Ie′), gJe′)

� ãd̃c∗(Je′ , fJe′) + ãd̃c∗(gJe′ , gJe′)

� ãd̃c∗(Je′ , fJe′)

which means that fJe′ = Je′ . Therefore, we have S(Ie′ , Je′) = fIe′ = Ie′ and

S(Je′ , Ie′) = fJe′ = Je′ .

Thus (Ie′ , Je′) is common coupled fixed point of S, f and g.

The same reasoning that in Theorem 3.1.4 tells us that Ie′ = Je′ , which means

that S, f and g have a unique fixed point in Ẽ.

Application to the existence of solutions of integral equations

Theorem 3.1.8. Let us Consider the integral equation

Fe1(t) =
∫
C

(K1(t, s, Fe1(s)) +K2(t, s, Fe1(s))) ds, t ∈ C

Where C is a Lebesgue measurable set. Suppose that

(i) K1, K2 : C × C ×R(C)∗ → R(C)∗,

(ii) there exist two continuous function τ : C × C → R(C)∗ and r ∈ (0, 1)

such that for u, v ∈ C and Fe1(v), Fe2(v) ∈ R(C)∗,

inf{|K1(u, v, Fe1(v))−K1(u, v, Fe2(v))|}
≤ r inf{|τ(u, v)|}. inf{|(Fe1(v)− Fe2(v))|},
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(iii) sup
t∈C

∫
C

inf{|τ(u, v)|}dv ≤ 1.

then the integral equation has a unique solutions in L∞(C).

Proof: Let E = C = [0, 1] and Ẽ = L∞(C) be the set of essential bounded

measuarble function on C and H = L2(C), where the parameter set C is

a lebesgue measureable set. By L(H) we denote the set of bounded linear

operators on hilbert space H.

Consider d̃c∗ : Ẽ × Ẽ → L(H) by d̃c∗(Fe1 , Fe2) = Minf{|μaFe1 (s)−μaFe2
(s)|/s∈C} for

all Fe1 , Fe2 ∈ Ẽ, where Mh : H → H is the multiplication operator defined by

Mh(τ) = h. τ for τ ∈ H. Then d̃c∗ is a C∗ - algebra valued fuzzy soft metric

and (Ẽ, L(H), d̃c∗) is a complete C∗ - algebra valued fuzzy soft metric space.

Define two self mappings S : Ẽ × Ẽ → Ẽ by

S(Fe1 , Ge1)(t) =
∫
C

(K1(t, s, Fe1(s)) +K2(t, s, Ge1(s))) ds, t ∈ C

Notice that

d̃c∗(S(Fe1 , Ge1), S(Fe2 , Ge2)) = M
inf

����μaS(Fe1 ,Ge1 )
(s)−μa

S(Fe2 ,Ge2 )
(s)

���/s∈C
�.

Now consider norm∥∥∥d̃c∗(S(Fe1 , Ge1), S(Fe2 , Ge2))
∥∥∥

= Sup
h=1

(
M
inf

����μaS(Fe1 ,Ge1 )
(s)−μa

S(Fe2 ,Ge2 )
(s)

���/s∈C
�h, h

)

= Sup
‖h‖=1

∫
C

[
inf
{∣∣∣μa

S(Fe1 ,Ge1 )
(s)− μa

S(Fe2 ,Ge2 )
(s)
∣∣∣ /s ∈ C}]h(t)h(t)dt

≤ Sup
‖h‖=1

∫
C

[∫
C

inf {|K1(t, s, Fe1(s))−K1(t, s, Fe2(s))|}ds
]
|h(t)|2 dt

+ Sup
‖h‖=1

∫
C

[∫
C

inf {|K1(t, s, Ge1(s))−K1(t, s, Ge2(s))|}ds
]
|h(t)|2 dt

≤ Sup
‖h‖=1

∫
C

[∫
C

r inf {|τ(t, s)(Fe1(s))− τ(t, s)(Fe2(s))|}ds
]
|h(t)|2 dt

+ Sup
‖h‖=1

∫
C

[∫
C

r inf {|τ(t, s)(Ge1(s))− τ(t, s)(Ge2(s))|}ds
]
|h(t)|2 dt
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≤ r Sup
‖h‖=1

∫
C

[∫
C

inf {|τ(t, s)|} inf {|Fe1(s)− Fe2(s)|}ds
]
|h(t)|2 dt

+r Sup
‖h‖=1

∫
C

[∫
C

inf {|τ(t, s)|} inf {|Ge1(s)−Ge2(s)|}ds
]
|h(t)|2 dt

≤ r Sup
‖h‖=1

∫
C

[∫
C

inf {|τ(t, s)|}ds
]
|h(t)|2 dt. ‖inf {|Fe1(s)− Fe2(s)|}‖∞

+r Sup
‖h‖=1

∫
C

[∫
C

inf {|τ(t, s)|}ds
]
|h(t)|2 dt. ‖inf {|Ge1(s)−Ge2(s)|}‖∞

≤ r Sup
‖h‖=1

∫
C

inf {|τ(t, s)|}ds. Sup
‖h‖=1

∫
C

|h(t)|2 dt. ‖inf {|Fe1(s)− Fe2(s)|}‖∞

+r Sup
‖h‖=1

∫
C

inf {|τ(t, s)|}ds. Sup
‖h‖=1

∫
C

|h(t)|2 dt. ‖inf {|Ge1(s)−Ge2(s)|}‖∞

≤ r ‖inf {|Fe1(s)− Fe2(s)|}‖∞ + r ‖inf {|Ge1(s)−Ge2(s)|}‖∞ .

Set ã =
√
r1L(H), then ã ∈ L(H) and ||ã|| = √r < 1√

2
. Hence, applying our

corollary(3.1.5) , we get the desired result.
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SECTION 3.2 : COINCIDENCE POINT THEOREM BY USING

HYBRID PAIROF MAPPINGS IN C∗-ALGEBRA

VALUED FUZZY SOFT METRIC SPACES

In this section, we establish a coincidence point theorem for a hybrid pair of

single valued and multivalued mappings in complete C∗-algebra valued fuzzy

soft metric spaces. An example is also given to validate our result.

We need the following definitions and results in the sequel.

Let (Ẽ, C̃, d̃c∗) be a C∗-algebra valued fuzzy soft metric space. We denote by

CB(Ẽ) be a class of all non-empty closed and bounded subsets of Ẽ. For the

points Fe1 , Fe2 ∈ Ẽ and X̃, Ỹ ∈ CB(Ẽ),

define D̃c∗(Fe1 , Ỹ ) = infGe1∈Ỹ d̃c∗(Fe1 , Ge1).

Let H̃c∗ be the Hausdorff C∗-algebra valued fuzzy soft metric induced by the

C∗-algebra valued fuzzy soft metric d̃c∗ on Ẽ, that is

H̃c∗(X̃, Ỹ ) = max

{
sup

Fe1∈X̃

D̃c∗(Fe1 , Ỹ ), sup
Ge1∈Ỹ

D̃c∗(X̃, Ge1)

}

for every X̃, Ỹ ∈ CB(Ẽ). It is well known that
(
CB(Ẽ), C̃, H̃c∗

)
is a complete

C∗-algebra valued fuzzy soft metric space, whenever (Ẽ, C̃, d̃c∗) is a complete

C∗-algebra valued fuzzy soft metric space.

Definition 3.2.1.(R.P.Agarwal et al.[79]): Let T : Ẽ → CB(Ẽ) be a

multi-valued map. An element Fe1 ∈ Ẽ is fixed point of T if Fe1 ∈ TFe1

Definition 3.2.2.(R.P.Agarwal et al.[79]): Let T : Ẽ → CB(Ẽ) and f :

Ẽ → Ẽ be a multi-valued map and single valued maps. An element Fe1 ∈ Ẽ
is coincidence point of T and f if fFe1 ∈ TFe1 . We denote

C {f, T} =
{
Fe1 ∈ Ẽ/fFe1 ∈ TFe1

}
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Definition 3.2.3.(R.P.Agarwal et al.[79]): An element Fe1 ∈ Ẽ is a com-

mon fixed point of T : Ẽ → CB(Ẽ)and f : Ẽ → Ẽ if Fe1 = fFe1 ∈ TFe1

.

Theorem 3.2.4. Let (Ẽ, C̃, d̃c∗) be a complete C∗-algebra valued fuzzy

soft metric space, and T : Ẽ → CB(Ẽ) be a multi-valued map satisfying

H̃c∗ (TFe1 , TFe2) � ã�d̃c∗(Fe1 , Fe2)ã (1)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃ with ||ã|| < 1. Then T has a unique fixed

point in Ẽ.

Lemma 3.2.5. If X̃, Ỹ ∈ CB(Ẽ) and Fe1 ∈ X̃, then for any fixed b̃ ∈ C̃+′

with ||b̃|| < 1, there exist Fe2 = Fe2(Fe1) ∈ Ỹ such that

d̃c∗ (Fe1 , Fe2) � b̃H̃c∗(X̃, Ỹ ) (2)

Now we give our main result.

Theorem 3.2.6. Let (Ẽ, C̃, d̃c∗) be a complete C∗-algebra valued fuzzy

soft metric space. Let S : Ẽ → CB(Ẽ) be a multi-valued map and f : Ẽ → Ẽ

be a single-valued map. Suppose that

H̃c∗ (SFe1 , SFe2) � ãd̃c∗(fFe1 , fFe2)

+ã
(
D̃c∗(fFe1 , SFe1) + D̃c∗(fFe2 , SFe2)

)
+ã
(
D̃c∗(fFe1 , SFe2) + D̃c∗(fFe2 , SFe1)

)
(3)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃+′
with ||ã|| < 1. Suppose that

(A1) S(Ẽ) ⊆ f(Ẽ);

(A2) f(Ẽ) is closed.
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Then, there exists point F ′
e ∈ Ẽ, such that fF ′

e ∈ SF ′
e.

Proof: Let Fe0 ∈ Ẽ be arbitrary. Then, fFe0 and SFe0 are well defined.

From (A1), there exists Fe1 ∈ Ẽ, such that fFe1 ∈ SFe0 .

Again from (A1) and Lemma 3.2.5 with ||b̃|| < 1, as fFe1 ∈ SFe0 , there exists

Fe2 ∈ Ẽ such that fFe2 ∈ SFe1 and

d̃c∗ (fFe1 , fFe2) � b̃H̃c∗(SFe0 , SFe1) (4)

from (3) and (4), we get

d̃c∗ (fFe1 , fFe2) � b̃H̃c∗(SFe0 , SFe1)

� b̃ãd̃c∗(fFe0 , fFe1)

+b̃ã
(
D̃c∗(fFe0 , SFe0) + D̃c∗(fFe1 , SFe1)

)
+b̃ã

(
D̃c∗(fFe0 , SFe1) + D̃c∗(fFe1 , SFe0)

)
. (5)

In contrast, we have

D̃c∗(fFe0 , SFe0) � d̃c∗(fFe0 , fFe1)

D̃c∗(fFe1 , SFe1) � d̃c∗(fFe1 , fFe2)

D̃c∗(fFe1 , SFe0) � d̃c∗(fFe1 , fFe1) = 0

D̃c∗(fFe0 , SFe1) � d̃c∗(fFe0 , fFe2)

� d̃c∗(fFe0 , fFe1) + d̃c∗(fFe1 , fFe2) (6)

from (5) and (6), we get

d̃c∗ (fFe1 , fFe2) � b̃ãd̃c∗(fFe0 , fFe1)

+b̃ã
(
d̃c∗(fFe0 , fFe1) + d̃c∗(fFe1 , fFe2)

)
+b̃ã

(
d̃c∗(fFe0 , fFe1) + d̃c∗(fFe1 , fFe2)

)
= 3 b̃ãd̃c∗(fFe0 , fFe1) + 2b̃ãd̃c∗(fFe1 , fFe2) (7)
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Therefore,

(1− 2b̃ã)d̃c∗ (fFe1 , fFe2) � 3b̃ãd̃c∗(fFe0 , fFe1)

Since ||b̃||||ã|| < 1
2
, we have 1− 2b̃ã is invertible, and can expressed as

(1− 2b̃ã)−1 =
∞∑

m=0

(2b̃ã)m, which together with 2b̃ã ∈ C̃+′

can yields (1− 2b̃ã)−1 ∈ C̃+′
. By Lemma 1.6.7(iii)(Ch-1), we know

d̃c∗ (fFe1 , fFe2) � κ̃d̃c∗(fFe0 , fFe1)

where κ̃ = 3b̃ã(1− 2b̃ã)−1 ∈ C̃+′
with ||3b̃ã(1− 2b̃ã)−1|| < 1.

Again from (A1) and Lemma 3.2.5 with ||b̃|| < 1, as fFe2 ∈ SFe1 , there exists

Fe3 ∈ Ẽ such that fFe3 ∈ SFe2 and

d̃c∗ (fFe2 , fFe3) � b̃H̃c∗(SFe2 , SFe1) (8)

from (3) and (8), we get

d̃c∗ (fFe2 , fFe3) � b̃H̃c∗(SFe2 , SFe1)

� b̃ãd̃c∗(fFe2 , fFe1)

+b̃ã
(
D̃c∗(fFe2 , SFe2) + D̃c∗(fFe1 , SFe1)

)
+b̃ã

(
D̃c∗(fFe2 , SFe1) + D̃c∗(fFe1 , SFe2)

)
. (9)

In contrast, we have

D̃c∗(fFe2 , SFe2) � d̃c∗(fFe2 , fFe3)

D̃c∗(fFe1 , SFe1) � d̃c∗(fFe1 , fFe2)

D̃c∗(fFe2 , SFe1) � d̃c∗(fFe2 , fFe2) = 0

D̃c∗(fFe1 , SFe2) � d̃c∗(fFe1 , fFe3)

� d̃c∗(fFe1 , fFe2) + d̃c∗(fFe2 , fFe3). (10)
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Similarly as above, from (9) and (10), we get

d̃c∗ (fFe2 , fFe3) � κ̃d̃c∗(fFe1 , fFe2)

Continuing this process, we can construct a sequence {Gen} in Ẽ, such that

Ge0 = fFe1 and, for each n ∈ N ,

Ge2n = fFe2n+1 ∈ SFe2n Ge2n+1 = fFe2n+2 ∈ SFe2n+1 (11)

and

d̃c∗
(
Ge2n , Ge2n+1

)
= d̃c∗(fFe2n+1 , fFe2n+2) � κ̃d̃c∗(fFe2n+1 , fFe2n)

d̃c∗
(
Ge2n−1 , Ge2n

)
= d̃c∗(fFe2n , fFe2n+1) � κ̃d̃c∗(fFe2n−1 , fFe2n).

Therefore, we have

d̃c∗
(
Gen , Gen+1

) � κ̃d̃c∗
(
Gen−1 , Gen

)
for alln ≥ 1 (12)

From (12), by induction and Lemma (1.6.7) (iii), we get

d̃c∗
(
Gen , Gen+1

) � κ̃nd̃c∗ (Ge0 , Ge1) for alln ∈ N (13)

Now, we shall show that {Gen} is a Cauchy sequence in Ẽ.

For m > n, by using triangle inequality and (13) we have

d̃c∗ (Gen , Gem) � d̃c∗
(
Gen , Gen+1

)
+ d̃c∗

(
Gen+1 , Gen+2

)
+ · · ·+ d̃c∗

(
Gem−1 , Gem

)
� (κ̃n + κ̃n+1 + κ̃n+2 + · · ·+ κ̃m−1) d̃c∗ (Ge0 , Ge1)

≤ ||κ̃n + κ̃n+1 + κ̃n+2 + · · ·+ κ̃m−1||||d̃c∗ (Ge0 , Ge1) || ˜IC̃

≤ ||κ̃n||+ ||κ̃n+1||+ · · ·+ ||κ̃m−1||||d̃c∗ (Ge0 , Ge1) || ˜IC̃

= ||κ̃||n
1−||κ̃|| ||d̃c∗ (Ge0 , Ge1) || ˜IC̃ → 0 as n→∞.

Hence {Gen} is a Cauchy sequence. Now as,(Ẽ, C̃, d̃c∗) be a complete C∗-

algebra valued fuzzy soft metric space, {Gen} converges to some Ge′ ∈ Ẽ.
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Therefore,

lim
n→∞

Gen = lim
n→∞

fFe2n+1 = Ge′ . (14)

As Ge2n = fFe2n+1 and f(Ẽ) is closed, we have Ge′ ∈ f(Ẽ). Hence there exist

Fe′ ∈ Ẽ, such that fFe′ = Ge′ . From the contraction type condition (3) and

(11), we obtain

D̃c∗ (fFe′ , SFe′) � d̃c∗
(
fFe′ , fFe2n+2

)
+ D̃c∗

(
fFe2n+2 , SFe′

)
� d̃c∗

(
fFe′ , fFe2n+2

)
+ H̃c∗

(
SFe′ , SFe2n+1 ,

)
� d̃c∗

(
fFe′ , fFe2n+2

)
+ ãd̃c∗

(
fFe′ , fFe2n+1 ,

)
+ã
(
D̃c∗ (fFe′ , SFe′) + D̃c∗

(
fFe2n+1 , SFe2n+1

))
+ã
(
D̃c∗

(
fFe′ , SFe2n+1

)
+ D̃c∗

(
fFe2n+1 , SFe′

))
� d̃c∗

(
fFe′ , fFe2n+2

)
+ ãd̃c∗

(
fFe′ , fFe2n+1 ,

)
+ã
(
D̃c∗ (fFe′ , SFe′) + D̃c∗

(
fFe2n+1 , fFe2n+2

))
+ã
(
D̃c∗

(
fFe′ , fFe2n+2

)
+ D̃c∗

(
fFe2n+1 , SFe′

))
which implies

D̃c∗ (fFe′ , SFe′) � (1− ã)−1d̃c∗
(
fFe′ , fFe2n+2

)
+ (1− ã)−1ãd̃c∗

(
fFe′ , fFe2n+1 ,

)
+(1− ã)−1ã

(
D̃c∗

(
fFe2n+1 , fFe2n+2

))
+(1− ã)−1ã

(
D̃c∗

(
fFe′ , fFe2n+2

)
+ D̃c∗

(
fFe2n+1 , SFe′

))
Letting n → ∞ in the above inequality and ||(1− ã)−1ã|| < 1, using (14), we

get D̃c∗ (fFe′ , SFe′) = 0. Hence, as SFe′ is closed, fFe′ ∈ SFe′

Now we give an example to illustrate our Theorem 3.2.6.

Example 3.2.7. Let E = {e1, e2, e3, e4}, U = {a, b, c, d}
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and C = {e1, e2, e3} be a subset of E. Define fuzzy soft set as,

(FE, C) =

⎧⎪⎨
⎪⎩

e1 = {a0.3, b0.4, c0.1, d0.2}, e2 = {a0.6, b0.7, c0.5, d0.4},
e3 = {a0.8, b0.9, c0.6, d0.7}

⎫⎪⎬
⎪⎭

Fe1 = μFe1
= {a0.3, b0.4, c0.1, d0.2}, Fe2 = μFe2

= {a0.6, b0.7, c0.5, d0.4}

Fe3 = μFe3
= {a0.8, b0.9, c0.6, d0.7}

and FSC(FE) = {Fe1 , Fe2 , Fe3}, let Ẽ be absolute fuzzy soft set, that is Ẽ(e) =

1̃ for all e ∈ E, and C̃ = M2(R(C)∗), be the C∗-algebra. Define d̃c∗ : Ẽ×Ẽ → C̃

by d̃c∗(Fe1 , Fe2) = (Inf{|Fe1(a)−Fe2(a)|/a ∈ C}, 0), then obviously (Ẽ, C̃, d̃c∗)

is a complete C∗-algebra valued fuzzy soft metric space. We define S : Ẽ →
CB(Ẽ) by SFe1(a) =

F 2
e1

2
+ 9

50
, f : Ẽ → Ẽ by fFe1 = Fe1 for all a ∈ U and

Fe1 ∈ Ẽ. Notice that,

fFe1 = Fe1 = {0.3, 0.4, 0.1, 0.2} and fFe2 = Fe2 = {0.6, 0.7, 0.5, 0.4} . Thus,

inf{|μa
fFe1

(s)− μa
fFe2

(s)|/s ∈ C} = inf{0.3, 0.3, 0.2, 0.4} = 0.2.

Hence d̃c∗(fFe1 , fFe2) =

⎡
⎢⎣ 0.2 0

0 0.2

⎤
⎥⎦ .

Also, we have

d̃c∗(SFe1 , SFe2)(a) = (inf{|SFe1(a)− SFe2(a)|/a ∈ C}, 0)

= (inf{0.135, 0.165, 0.12, 0.06}, 0) =

⎡
⎢⎣ 0.06 0

0 0.06

⎤
⎥⎦

�

⎡
⎢⎣ 0.16 0

0 0.16

⎤
⎥⎦
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�

⎡
⎢⎣ 0.8 0

0 0.8

⎤
⎥⎦
⎡
⎢⎣ 0.2 0

0 0.2

⎤
⎥⎦

� c̃d̃c∗(fFe1 , fFe2)

Here c̃ =

⎡
⎢⎣ 0.8 0

0 0.8

⎤
⎥⎦ with ||c̃|| = 0.8 < 1. Therefore, (3) holds for all

Fe1 , Fe2 ∈ Ẽ. Also, the other hypotheses (A1) and (A2) are satisfied. It is

seen that S(0.2) = f(0.2) = 0.2. Therefore, S and f have the coincidence at

the point Fe′ = 0.2.

Corollary 3.2.8. Let (Ẽ, C̃, d̃c∗) be a complete C∗-algebra valued fuzzy

soft metric space. Let S : Ẽ → CB(Ẽ) be a pair of multivalued map. Suppose

that

H̃c∗ (SFe1 , SFe2) � ãd̃c∗(Fe1 , Fe2) + ã
(
D̃c∗(Fe1 , SFe1) + D̃c∗(Fe2 , SFe2)

)
+ã
(
D̃c∗(Fe1 , SFe2) + D̃c∗(Fe2 , SFe1)

)
(15)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃+
′
with ||ã|| < 1. Then there exist a point

Fe′ ∈ Ẽ such that Fe′ ∈ SFe′ .
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CHAPTER 4

UNIQUE COMMON FIXED POINT THEOREM FOR FOUR MAPS IN

COMPLEX VALUED S−METRIC SPACES

In this chapter we obtain a common fixed point theorem for the two weakly

compatible pairs of mappings satisfying a contractive condition in complex val-

ued S-metric spaces. Also we give an example to illustrate our main theorem.

In 2016 Naval Singh et al.[68] proved the following theorem in complex

valued metric spaces as follows.

Theorem 4.1.(Navalsingh et al.[68]): Let (X, d) be a complete complex

valued metric space and S, T : X → X. If ∃ mappings λ, μ, γ, δ : X×X×X →
R+ such that for all x, y ∈ X,

(a)λ(TSx, y, a) ≤ λ(x, y, a) and λ(x, STy, a) ≤ λ(x, y, a),

μ(TSx, y, a) ≤ μ(x, y, a) and μ(x, STy, a) ≤ μ(x, y, a),

γ(TSx, y, a) ≤ γ(x, y, a) and γ(x, STy, a) ≤ γ(x, y, a),

δ(TSx, y, a) ≤ δ(x, y, a) and δ(x, STy, a) ≤ δ(x, y, a),

(b)

d(Sx, Ty) � λ(x, y, a)d(x, y) + μ(x, y, a)d(x,Sx)d(y,Ty)
1+d(x,y)

+ γ(x, y, a)d(y,Sx)d(x,Ty)
1+d(x,y)

+δ(x, y, a)d(x,Sx)d(x,Ty)+d(y,Ty)d(y,Sx)
1+d(x,Ty)+d(y,Sx)

,

(c) λ(x, y, a) + μ(x, y, a) + γ(x, y, a) + δ(x, y, a) < 1, then S and T have a

unique common fixed point.

In this chapter we generalize the Theorem 4.1 in complex valued S-metric

spaces for four maps satisfying more general contractive condition using 7

functions.

First we prove a proposition which is needed to prove our main Theorem.
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Proposition 4.2: Let (X,S) be a complex valued S-metric space and

F,G, f, g : X → X. Let y0 ∈ X and define the sequence {yn} by

y2n+1 = gx2n+1 = Fx2n; y2n+2 = fx2n+2 = Gx2n+1. ∀ n = 0, 1, 2....

Assume that there exists a mapping λ1 : X ×X ×X → R+ such that

(i) λ1(Fx, y, a) ≤ λ1(fx, y, a) and λ1(x,Gy, a) ≤ λ1(x, gy, a),

(ii) λ1(Gx, y, a) ≤ λ1(gx, y, a) and λ1(x, Fy, a) ≤ λ1(x, fy, a).

∀ x, y ∈ X and for a fixed element a ∈ X and n = 0, 1, 2, ...

Then λ1(y2n, y, a) ≤ λ1(y0, y, a) and

λ1(x, y2n+1, a) ≤ λ1(x, y1, a),∀ x, y ∈ X.

Proof: Let x, y ∈ X and n = 0, 1, 2... Then we have

λ1(y2n, y, a) = λ1(Gx2n−1, y, a) ≤ λ1(gx2n−1, y, a)

= λ1(y2n−1, y, a) = λ1(Fx2n−2, y, a) ≤ λ1(fx2n−2, y, a)

= λ1(y2n−2, y, a) = λ1(Gx2n−3, y, a) ≤ λ1(gx2n−3, y, a)

= λ1(y2n−3, y, a) · · · = λ1(y0, y, a).

Thus λ1(y2n, y, a) ≤ λ1(y0, y, a).

Similarly we have

λ1(x, y2n+1, a) = λ1(x, Fx2n, a) ≤ λ1(x, fx2n, a)

= λ1(x, y2n, a) = λ1(x,Gx2n−1, a) ≤ λ1(x, gx2n−1, a)

= λ1(x, y2n−1, a) = λ1(x, Fx2n−2, a) ≤ λ1(x, fx2n−2, a)

= λ1(x, y2n−2, a) · · · = λ1(x, y1, a).

Thus λ1(x, y2n+1, a) ≤ λ1(x, y1, a).

Now we give our main theorem.

Theorem 4.3. Let (X,S) be a complex valued S-metric space and

F,G, f, g : X → X satisfying the conditions .
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(4.3.1) GX ⊆ fX and FX ⊆ gX,

(4.3.2) The pairs (F, f) and (G, g) are weakly compatible ,

(4.3.3) fX or gX is a complete subspace of X,

(4.3.4) If there exist mappings λ1, λ2, λ3, λ4, λ5, λ6, λ7 : X×X×X → R+ such

that λn(Fx, y, a) ≤ λn(fx, y, a); λn(Gx, y, a) ≤ λn(gx, y, a) and λn(x, Fy, a) ≤
λn(x, fy, a); λn(x,Gy, a) ≤ λn(x, gy, a),∀ n = 1, 2, 3..., 7, forall x, y ∈ X and

for a fixed element a ∈ X,

(4.3.5)

S(Fx, Fx,Gy) � λ1(fx, gy, a)S(fx, fx, gy) + λ2(fx, gy, a)S(fx, fx, Fx)

+λ3(fx, gy, a)S(gy, gy,Gy)

+λ4(fx, gy, a)[S(gy, gy, Fx) + S(fx, fx,Gy)]

+λ5(fx, gy, a)
(

S(fx,fx,Fx)S(gy,gy,Gy)
1+S(fx,fx,gy)

)
+λ6(fx, gy, a)

(
S(gy,gy,Fx)S(fx,fx,Gy)

1+S(fx,fx,gy)

)
+λ7(fx, gy, a)

(
S(fx,fx,Fx)S(fx,fx,Gy)+S(gy,gy,Gy)S(gy,gy,Fx)

1+S(fx,fx,Gy)+S(gy,gy,Fx)

)
∀ x, y ∈ X and for a fixed element a ∈ X, where

(4.3.6) (λ1 + λ2 + λ3 + 2λ4 + λ5 + λ6 + λ7)(x, y, a) < 1.

Then F,G, f and g have a unique common fixed point.

Proof: Let x0 ∈ X be an arbitrary point.

We define a sequence {yn} in X such that y2n+1 = gx2n+1 = Fx2n and

y2n+2 = fx2n+2 = Gx2n+1, n = 0, 1, 2, ...
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From (4.3.5), we have

S(y2n+1, y2n+1, y2n+2)

= S(Fx2n, Fx2n, Gx2n+1)

� λ1(y2n, y2n+1, a)S(y2n, y2n, y2n+1) + λ2(y2n, y2n+1, a)S(y2n, y2n, y2n+1)

+λ3(y2n, y2n+1, a)S(y2n+1, y2n+1, y2n+2)

+λ4(y2n, y2n+1, a)[S(y2n+1, y2n+1, y2n+1) + S(y2n, y2n, y2n+2)]

+λ5(y2n, y2n+1, a)
(

S(y2n,y2n,y2n+1)S(y2n+1,y2n+1,y2n+2)
1+S(y2n,y2n,y2n+1)

)
+λ6(y2n, y2n+1, a)

(
S(y2n+1,y2n+1,y2n+1)S(y2n,y2n,y2n+1)

1+S(y2n,y2n,y2n+1)

)
+λ7(y2n, y2n+1, a)

(
S(y2n,y2n,y2n+1)S(y2n,y2n,y2n+2)+S(y2n+1,y2n+1,y2n+2)S(y2n+1,y2n+1,y2n+1)

1+S(y2n,y2n,y2n+1)+S(y2n+1,y2n+1,y2n+1)

)
Since S(x, x, x) = 0, we have

|S(y2n+1, y2n+1, y2n+2)| ≤ λ1(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|
+λ2(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|
+λ3(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)|
+λ4(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|
+λ4(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)|
+λ5(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)|

∣∣∣ S(y2n,y2n,y2n+1)
1+S(y2n,y2n,y2n+1)

∣∣∣
+λ7(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|

∣∣∣ S(y2n,y2n,y2n+2)
1+S(y2n,y2n,y2n+2)

∣∣∣ .
|S(y2n+1, y2n+1, y2n+2)| ≤ (λ1 + λ2 + λ4 + λ7)(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|

+(λ3 + λ4 + λ5)(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)| .
Using Proposition 4.2, we get

|S(y2n+1, y2n+1, y2n+2)| ≤ (λ1 + λ2 + λ4 + λ7)(y0, y1, a) |S(y2n, y2n, y2n+1)|
+(λ3 + λ4 + λ5)(y0, y1, a) |S(y2n+1, y2n+1, y2n+2)|

which in turn implies that

|S(y2n+1, y2n+1, y2n+2)| ≤
(
(λ1+λ2+λ4+λ7)(y0,y1,a)
1−(λ3+λ4+λ5)(y0,y1,a)

)
|S(y2n, y2n, y2n+1)| .
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Let h1 =
(
(λ1+λ2+λ4+λ7)(y0,y1,a)
1−(λ3+λ4+λ5)(y0,y1,a)

)
Thus |S(y2n+1, y2n+1, y2n+2)| ≤ h1 |S(y2n, y2n, y2n+1)| . (1)

Similarly using S(x, y, y) = S(x, x, y) and proceeding as above we can show

that |S(y2n+2, y2n+2, y2n+3)| ≤ h2 |S(y2n+1, y2n+1, y2n+2)| (2)

where h2 =
(
(λ1+λ3+λ4+λ7)(y0,y1,a)
1−(λ2+λ4+λ5)(y0,y1,a)

)
.

Let h = max{h1, h2}, then 0 ≤ h < 1, since h1, h2 ∈ R+.

Hence from (1) and (2), we have |S(yn, yn, yn+1)| ≤ h |S(yn−1, yn−1, yn)| ,
n = 1, 2, ...

Hence

|S(yk, yk, yk+1)| ≤ h |S(yk−1, yk−1, yk)|
≤ h2 |S(yk−2, yk−2, yk−1)|
...

...

≤ hk |S(y0, y0, y1)| (3)

→ 0 as k →∞ (4)

Hence for any m > n, we have

|S(yn, yn, ym)|= 2

⎡
⎢⎣ |S(yn, yn, yn+1)|+

∣∣S(yn+1, yn+1, yn+2)
∣∣+

...+
∣∣S(ym−1, ym−1, ym)

∣∣
⎤
⎥⎦

= 2(hn+hn+1+...+hm−1) |S(y0, y0, y1)| from(3)

≤ 2hn

1−h
|S(y0, y0, y1)|

|S(yn, yn, ym)| ≤ 2hn

1−h
|S(y0, y0, y1)| → 0 as m,n→∞.

Hence {yn} is a Cauchy sequence in X.

Now suppose fX is a complete subspace of X. Since y2n+2 = fx2n+2 ∈ f(X)

and {yn} is a Cauchy sequence, there exists z ∈ f(X) such that y2n+2 → z as

n→∞.

83



Then there exists u ∈ X such that fu = z.

Thus lim
n→∞

Fx2n = lim
n→∞

gx2n+1 = lim
n→∞

Gx2n+1 = lim
n→∞

fx2n+2 = z.

Consider

S(Fu, Fu,Gx2n+1)

� λ1(fu, y2n+1, a)S(fu, fu, y2n+1)

+λ2(fu, y2n+1, a)S(fu, fu, Fu)

+λ3(fu, y2n+1, a)S(y2n+1, y2n+1, y2n+2)

+λ4(fu, y2n+1, a)[S(y2n+1, y2n+1, Fu) + S(fu, fu, y2n+2)]

+λ5(fu, y2n+1, a)
(

S(fu,fu,Fu)S(y2n+1,y2n+1,y2n+2)
1+S(fu,fu,y2n+1)

)
+λ6(fu, y2n+1, a)

(
S(y2n+1,y2n+1,Fu)S(fu,fu,y2n+2)

1+S(fu,fu,y2n+1)

)
+λ7(fu, y2n+1, a)

(
S(fu,fu,Fu)S(fu,fu,y2n+2)+S(y2n+1,y2n+1,y2n+2)S(y2n+1,y2n+1,Fu)

1+S(fu,fu,y2n+2)+S(y2n+1,y2n+1,Fu)

)

|S(Fu, Fu,Gx2n+1)|
≤ λ1(fu, y2n+1, a)|S(fu, fu, y2n+1)|

+λ2(fu, y2n+1, a)|S(fu, fu, Fu)|
+λ3(fu, y2n+1, a)|S(y2n+1, y2n+1, y2n+2)|
+λ4(fu, y2n+1, a)|S(y2n+1, y2n+1, Fu) + S(fu, fu, y2n+2)|
+λ5(fu, y2n+1, a)

(
|S(fu,fu,Fu)||S(y2n+1,y2n+1,y2n+2)|

|1+S(fu,fu,y2n+1)|

)
+λ6(fu, y2n+1, a)

(
|S(y2n+1,y2n+1,Fu)||S(fu,fu,y2n+2)|

|1+S(fu,fu,y2n+1)|

)
+λ7(fu, y2n+1, a)

(
|S(fu,fu,Fu)||S(fu,fu,y2n+2)|+|S(y2n+1,y2n+1,y2n+2)||S(y2n+1,y2n+1,Fu)|

|1+S(fu,fu,y2n+2)+S(y2n+1,y2n+1,Fu)|

)
.

Letting n −→∞ and using Lemma 1.8.5 (Ch-1) and Lemma 1.8.7 (Ch-1),

we get

|S(Fu, Fu, z)| ≤ λ2(z, z, a) |S(z, z, Fu)|+ λ4(z, z, a) |S(z, z, Fu)|
from (4), Lemma 1.8.5 (Ch-1)

(1− (λ2 + λ4)(z, z, a)) |S(z, z, Fu)| ≤ 0

which in turn yields from (4.3.6) that |S(Fu, Fu, z)| ≤ 0.
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Therefore |S(Fu, Fu, z)| = 0. Hence Fu = z. Thus fu = Fu = z.

Since FX ⊆ gX, there exists v ∈ X such that Fu = gv.

Thus fu = Fu = gv = z.

Again from (4.3.5), we have

|S(z, z,Gv)| = |S(Fu, Fu,Gv)|
≤ λ1(fu, gv, a)|S(fu, fu, gv)|+ λ2(fu, gv, a)|S(fu, fu, Fu)|

+λ3(fu, gv, a)|S(gv, gv,Gv)|
+λ4(fu, gv, a)|S(gv, gv, Fu) + S(fu, fu,Gv)|
+λ5(fu, gv, a)

(
|S(fu,fu,Fu)||S(gv,gv,Gv)|

|1+S(fu,fu,gv)|

)
+λ6(fu, gv, a)

(
|S(gv,gv,Fu)||S(fu,fu,Gv)|

|1+S(fu,fu,gv)|

)
+λ7(fu, gv, a)

(
|S(fu,fu,Fu)||S(fu,fu,Gv)|+|S(gv,gv,Gv)||S(gv,gv,Fu)|

|1+S(fu,fu,Gv)+S(gv,gv,Fu)|

)
so that

|S(z, z,Gv)| ≤ λ3(z, z, a) |S(z, z,Gv)|+ λ4(z, z, a) |S(z, z, Gv)|.
(1− (λ3 + λ4)(z, z, a)) |S(z, z, Gv)| ≤ 0

which in turn yields from (4.3.6) that |S(z, z, Gv)| ≤ 0.

Therefore |S(z, z,Gv)| = 0. Hence Gv = z.

Thus Gv = z = fu = Fu = gv. (5)

Since (F, f) is weakly compatible,

we have fz = fFu = Ffu = Fz. (6)

S(Fz, Fz, z) = S(Fz, Fz,Gv)

� λ1(fz, gv, a)S(fz, fz, gv) + λ2(fz, gv, a)S(fz, fz, Fz)

+λ3(fz, gv, a)S(gv, gv,Gv)

+λ4(fz, gv, a)[S(gv, gv, Fz) + S(fz, fz,Gv)]

+λ5(fz, gv, a)
(

S(fz,fz,Fz)S(gv,gv,Gv)
1+S(fz,fz,Gv)

)
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+λ6(fz, gv, a)
(

S(gv,gv,Fz)S(fz,fz,Gv)
1+S(fz,fz,Gv)

)
+λ7(fz, gv, a)

(
S(fz,fz,Fz)S(fz,fz,Gv)+S(gv,gv,Gv)S(gv,gv,Fz)

1+S(fz,fz,Gv)+S(gv,gv,Fz)

)
= λ1(Fz, z, a)S(Fz, Fz, z)

+λ4(Fz, z, a)[S(z, z, Fz) + S(Fz, Fz, z)]

+λ6(Fz, z, a)
(

S(z,z,Fz)S(Fz,Fz,z)
1+S(Fz,Fz,z)

)
from (5) and (6)

|S(Fz, Fz, z)| ≤ λ1(Fz, z, a) |S(Fz, Fz, z)|+ λ4(Fz, z, a) |S(z, z, Fz) + S(Fz, Fz, z)|
+λ6(Fz, z, a) |S(z, z, Fz)|

∣∣∣ S(Fz,Fz,z)
1+S(Fz,Fz,z)

∣∣∣ .
(1− (λ1 + 2λ4 + λ6)(Fz, z, a)) |S(Fz, Fz, z)| ≤ 0

which in turn yields from (4.3.6) that |S(Fz, Fz, z)| ≤ 0.

Therefore |S(Fz, Fz, z)| = 0. Hence Fz = z.Thus z = Fz = fz. (7)

Since the pair (G, g) is weakly compatible,

we have gz = gGv = Ggv = Gz. (8)

From (4.3.5)

S(z, z, Gz) = S(Fz, Fz,Gz)

� λ1(fz, gz, a)S(fz, fz, gz) + λ2(fz, gz, a)S(fz, fz, Fz)

+λ3(fz, gz, a)S(gz, gz,Gz) + λ4(fz, gz, a)[S(gz, gz, Fz) + S(fz, fz,Gz)]

+λ5(fz, gz, a)
(

S(fz,fz,FZ)S(gz,gz,Gz)
1+S(fz,fz,gz)

)
+λ6(fz, gz, a)

(
S(gz,gz.Fz)S(fz,fz,Gz)

1+S(fz,fz,gz)

)
+λ7(fz, gz, a)

(
S(fz,fz,Fz)S(fz,fz,Gz)+S(gz,gz,Gz)S(gz,gz,Fz)

1+S(fz,fz,Gz)+S(gz,gz,Fz)

)

|S(z, z, Gz)| ≤ λ1(z,Gz, a) |S(z, z,Gz)|+ λ4(z,Gz, a) |S(Gz,Gz, z) + S(z, z,Gz)|
+λ6(z,Gz, a) |S(Gz,Gz, z)|

∣∣∣ S(z,z,Gz)
1+S(z,z,Gz)

∣∣∣ from (7), (8)

(1− (λ1 + 2λ4 + λ6)(z,Gz, a)) |S(z, z,Gz)| ≤ 0

which in turn yields from (4.3.6) that |S(z, z, Gz)| ≤ 0.

Therefore |S(z, z, Gz)| = 0.Hence Gz = z, so that Gz = gz = z. (9)
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Thus from (7) and (9), z is a common fixed point of F,G, f and g.

For uniqueness, let z∗ ∈ X be such that fz∗ = Fz∗ = z∗ = gz∗ = Gz∗.

Now from (4.3.5)

S(z, z, z∗) = S(Fz, Fz,Gz∗)

� λ1(fz, gz
∗, a)S(fz, fz, gz∗) + λ2(fz, gz

∗, a)S(fz, fz, Fz)

+λ3(fz, gz
∗, a)S(gz∗, gz∗, Gz∗)

+λ4[(fz, gz
∗, a)[S(gz∗, gz∗, F z) + S(fz, fz,Gz∗)]

+λ5(fz, gz
∗, a)

(
S(fz,fz,Fz)S(gz∗,gz∗,Gz∗)

1+S(fz,fz,gz∗)

)
+λ6(fz, gz

∗, a)
(

S(gz∗,gz∗,Fz)S(fz,fz,Gz∗)
1+S(fz,fz,gz∗)

)
+λ7(fz, gz

∗, a)
(

S(fz,fz,Fz)S(fz,fz,Gz∗)+S(gz∗,gz∗,Gz∗)S(gz∗,gz∗,Fz)
1+S(fz,fz,Gz∗)+S(gz∗,gz∗,Fz)

)
.

|S(z, z, z∗)| ≤ λ1(z, z
∗, a) |S(z, z, z∗)|

+λ4(z, z
∗, a) |S(z∗, z∗, z) + S(z, z, z∗)|

+λ6(z, z
∗, a) |S(z∗, z∗, z)|

∣∣∣ S(z,z,z∗)
1+S(z,z,z∗)

∣∣∣ .
|S(z, z, z∗)| ≤ (λ1 + 2λ4 + λ6)(z, z

∗, a) |S(z, z, z∗)|.
(1− (λ1 + 2λ4 + λ6)(z, z

∗, a)) |S(z, z, z∗)| ≤ 0

which in turn yields from (4.3.6) that |S(z, z, z∗)| ≤ 0.

Therfore |S(z, z, z∗)| = 0. Thus z = z∗.

Hence z is the unique common fixed point of F,G, f and g.

Similarly we can prove the theorem if gX is a complete subspace of X.

Now we give an example to illustrate our main Theorem 4.3.

Example 4.4. Let X = [0, 1] and S : X × X × X → C be defined by

S(x, y, z) = |x−z|+ i|y−z|. Then (X,S) is a complex valued S- metric space.

Define F,G, f and g : X → X by Fx = x
16
, Gx = x

12
, fx = x

4
and gx = x

3
, for

all x ∈ X. For fixed element a = 1
3
,

define λ1, λ2, λ3, λ4, λ5, λ6, λ7 : X ×X ×X → [0, 1] by
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λ1(x, y, a) = ( x
40

+ y
50

+ a), λ2(x, y, a) = xya
10
, λ3(x, y, a) = x2y2a2

10
,

λ4(x, y, a) = x3y3a3

10
, λ5(x, y, a) = x3+y3+a3

10
, λ6(x, y, a) = x2ya3

50
,

λ7(x, y, a) = xy3a2

40
, ∀ x, y ∈ X.

Then

λ1(x, y, a) + λ2(x, y, a) + λ3(x, y, a) + 2λ4(x, y, a) + λ5(x, y, a)

+ λ6(x, y, a) + λ7(x, y, a)

= ( x
40

+ y
50

+ a) + xya
10

+ x2y2a2

10
+ 2(x3y3a3

10
) + x3+y3+a3

10
+ x2ya3

50
+ xy3a2

40

≤ ( 1
40

+ 1
50

+ 1
3
) + 1

30
+ 1
90

+ 2
270

+ 55
270

+ 1
1350

+ 1
360

= 3442
5400

< 1.

Hence (λ1 + λ2 + λ3 + 2λ4 + λ5 + λ6 + λ7)(x, y, a) < 1.

We have λ1(Fx, y, a) = λ1(
x
16
, y, a) = ( x

640
+ y
50

+ a) and

λ1(fx, y, a) = λ1(
x
4
, y, a) = ( x

160
+ y
50

+ a)

clearly λ1(Fx, y, a) ≤ λ1(fx, y, a).

We haveλ1(x, Fy, a) = λ1(x,
y
16
, a) = ( x

40
+ y
800

+ a) and

λ1(x, fy, a) = λ1(x,
y
4
, a) = ( x

40
+ y
200

+ a)

clearlyλ1(x, Fy, a) ≤ λ1(x, fy, a).

We have λ1(Gx, y, a) = λ1(
x
12
, y, a) = ( x

480
+ y
50

+ a) and

λ1(gx, y, a) = λ1(
x
3
, y, a) = ( x

120
+ y
50

+ a)

clearly λ1(Gx, y, a) ≤ λ1(gx, y, a).

We have λ1(x,Gy, a) = λ1(x,
y
12
, a) = ( x

40
+ y
600

+ a) and

λ1(x, gy, a) = λ1(x,
y
3
, a) = ( x

40
+ y
150

+ a)

clearly λ1(x,Gy, a) ≤ λ1(x, gy, a).

Similarly we can prove that

λn(Fx, y, a) ≤ λn(fx, y, a), λn(x, Fy, a) ≤ λn(x, fy, a) and

λn(Gx, y, a) ≤ λn(gx, y, a), λn(x,Gy, a) ≤ λn(x, gy, a) ∀ n = 2, 3, 4, ...7.
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Consider

|S(Fx, Fx,Gy)|
=
∣∣S( x

16
, x
16
, y
12

)
∣∣

= | x
16
− y
12
|+ i| x

16
− y
12
|

= 1
4
[|x
4
− y

3
|+ i|x

4
− y

3
|]

< 1
3
[|x
4
− y

3
|+ i|x

4
− y

3
|]

≤ ( x
160

+ y
150

+ 1
3
)[|x
4
− y

3
|+ i|x

4
− y

3
|]

= λ1(fx, gy, a)S(fx, fx, gy)

≤ λ1(fx, gy, a)S(fx, fx, gy) + λ2(fx, gy, a)S(fx, fx, Fx)

+λ3(fx, gy, a)S(gy, gy,Gy) + λ4(fx, gy, a)[S(gy, gy, Fx) + S(fx, fx,Gy)]

+λ5(fx, gy, a)
(

S(fx,fx,Fx)S(gy,gy,Gy)
1+S(fx,fx,gy)

)
+ λ6(fx, gy, a)

(
S(gy,gy,Fx)S(fx,fx,Gy)

1+S(fx,fx,gy)

)
+λ7(fx, gy, a)

(
S(fx,fx,Fx)S(fx,fx,Gy)+S(gy,gy,Gy)S(gy,gy,Fx)

1+S(fx,fx,Gy)+S(gy,gy,Fx)

)
.

Thus (4.3.5) is satisfied.

One can easily verify the remaining conditions of Theorem 4.3.

Clearly x = 0 is the unique common fixed point of F,G, f and g.

This part of the work was published in ”Bulletin of International

Mathematical Virtual Intitute”, Vol.9, No. 1, November, 2018, pp

121-131.
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CHAPTER 5

COMMON AND COUPLED FIXED POINT THEOREMS IN Sb-METRIC

SPACES

We divide Chapter 5 into two sections, namely, Section 5.1 and Section

5.2. The main aim of this Chapter is to prove common fixed point results and

coupled Suzuki type result in complex valued Sb and Sb metric spaces.

SECTION 5.1: UNIQUE COMMON FIXED POINT THEOREM

FOR FOUR MAPS IN COMPLEX VALUED Sb-METRIC SPACES

Recently N.Priyobarta et al.[72] proved the following theorem in complex

valued Sb-metric spaces as follows.

Theorem 5.1.1.(N.Priyobarta et al.[72]): Let (X,S) be a complete com-

plex valued Sb-metric space and the mapping f : X → X satisfies for every

x, y ∈ X

S(fx, fx, fy) � α(S(x, x, fx) + S(y, y, fy))

where α ∈ [0, 1
2
). Then f has a unique fixed point.

In this section we generalize the Theorem 5.1.1 for two weakly compatible pairs

of mappings satisfying a contractive condition in complex valued Sb-metric

spaces. An example is also given to validate our result.

Theorem 5.1.2. Let (X,S) be a complex valued Sb-metric space with

coefficient b > 1 and F,G, f, g : X → X satisfying the conditions.

(5.1.2.1) GX ⊆ fX and FX ⊆ gX,

(5.1.2.2) the pairs (F, f) and (G, g) are weakly compatible ,

(5.1.2.3) fX or gX is a complete subspace of X,
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(5.1.2.4) S(Fx, Fx,Gy) � α max

⎧⎪⎨
⎪⎩

S(fx, fx, gy), S(fx, fx, Fx),

S(gy, gy,Gy), S(fx,fx,Fx)S(gy,gy,Gy)
1+S(Fx,Fx,Gy)

⎫⎪⎬
⎪⎭ .

∀ x, y ∈ X and α is real with 0 < α < 1
2b

.

Then F,G, f and g have a unique common fixed point.

Proof: Let x0 ∈ X be an arbitrary point.

We define a sequence {yn} in X such that y2n+1 = gx2n+1 = Fx2n and

y2n+2 = fx2n+2 = Gx2n+1, n = 0, 1, 2, ...

From (5.1.2.4), we have

S(y2n+1, y2n+1, y2n+2)

= S(Fx2n, Fx2n, Gx2n+1)

� α max

⎧⎪⎨
⎪⎩

S(fx2n, fx2n, gx2n+1), S(fx2n, fx2n, Fx2n),

S(gx2n+1, gx2n+1, Gx2n+1),
S(fx2n,fx2n,Fx2n)S(gx2n+1,gx2n+1,Gx2n+1)

1+S(Fx2n,Fx2n,Gx2n+1)

⎫⎪⎬
⎪⎭

= α max

⎧⎪⎨
⎪⎩

S(y2n, y2n, y2n+1), S(y2n, y2n, y2n+1),

S(y2n+1, y2n+1, y2n+2),
S(y2n,y2n,y2n+1)S(y2n+1,y2n+1,y2n+2)

1+S(y2n+1,y2n+1,y2n+2)

⎫⎪⎬
⎪⎭

= α max {S(y2n, y2n, y2n+1), S(y2n+1, y2n+1, y2n+2)}.

If we assume that S(y2n+1, y2n+1, y2n+2) > S(y2n, y2n, y2n+1).

Then S(y2n+1, y2n+1, y2n+2) � αS(y2n+1, y2n+1, y2n+2)

|S(y2n+1, y2n+1, y2n+2)| ≤ α |S(y2n, y2n, y2n+1)|
(1− α) |S(y2n+1, y2n+1, y2n+2)| ≤ 0

Since 0 < α < 1, we get |S(y2n+1, y2n+1, y2n+2)| ≤ 0.

It is a contradiction .

Thus |S(y2n+1, y2n+1, y2n+2)| ≤ α |S(y2n, y2n, y2n+1)| . (1)
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Now again from (5.1.2.4)

S(y2n+2, y2n+2, y2n+3)

= S(Gx2n+1, Gx2n+1, Fx2n+2). Since S(x, x, y) = S(y, y, x), weget

= S(Fx2n+2, Fx2n+2, Gx2n+1)

� α max

⎧⎪⎨
⎪⎩

S(fx2n+2, fx2n+2, gx2n+1), S(fx2n+2, fx2n+2, Fx2n+2),

S(gx2n+1, gx2n+1, Gx2n+1),
S(fx2n+2,fx2n+2,Fx2n+2)S(gx2n+1,gx2n+1,Gx2n+1)

1+S(Fx2n+2,Fx2n+2mGx2n+1)

⎫⎪⎬
⎪⎭

= α max

⎧⎪⎨
⎪⎩

S(y2n+2, y2n+2, y2n+1), S(y2n+2, y2n+2, y2n+3)

S(y2n+1, y2n+1, y2n+2),
S(y2n+2,y2n+2,y2n+3)S(y2n+1,y2n+1,y2n+2)

1+S(y2n+3,y2n+3,y2n+2)

⎫⎪⎬
⎪⎭

= α max {S(y2n+1, y2n+1, y2n+2), S(y2n+2, y2n+2, y2n+3)}.
If we assume that S(y2n+2, y2n+2, y2n+3) > S(y2n+1, y2n+1, y2n+2).

Then S(y2n+2, y2n+2, y2n+3) � α S(y2n+2, y2n+2, y2n+3)

|S(y2n+1, y2n+1, y2n+2)| ≤ α |S(y2n, y2n, y2n+1)|
(1− α) |S(y2n+2, y2n+2, y2n+3)| ≤ 0.

Since 0 < α < 1, we have |S(y2n+2, y2n+2, y2n+3)| ≤ 0.

It is a contradiction .

Thus |S(y2n+2, y2n+2, y2n+3)| ≤ α |S(y2n+1, y2n+1, y2n+2)| . (2)

Continuing in this way , we get

|S(yn, yn, yn+1)| ≤ α |S(yn−1, yn−1, yn)| , for n = 1, 2, 3, .....

Hence

|S(yk, yk, yk+1| ≤ α |S(yk−1, yk−1, yk|
≤ α2 |S(yk−2, yk−2, yk−1|
:

:

≤ αk |S(y0, y0, y1| (3)

−→ 0 as k −→ ∞
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Hence foe any m > n we have

|S(yn, yn, ym)|

≤ 2b

⎡
⎢⎣ |S(yn, yn, yn+1)|+ b |S(yn+1, yn+1, yn+2)|+ b2 |S(yn+2, yn+2, yn+3)|+
............+ bm−n−1 |S(ym−1, ym−1, ym)|

⎤
⎥⎦

≤ 2b

⎡
⎢⎣ αn |S(y0, y0, y1)|+ bαn+1 |S(y0, y0, y1)|+ b2αn+2 |S(y0, y0, y1)|+
...............+ bm−n−1αm−1 |S(y0, y0, y1)|

⎤
⎥⎦

≤ 2b αn [1 + b α + (b α)2 + ..........+ (b α)m−n−1] |S(y0, y0, y1)|
≤ 2b αn

1−b α
|S(y0, y0, y1)|

|S(yn, yn, ym)| ≤ 2bαn

1−bα
|S(y0, y0, y1)| → 0 as m,n→∞.

Definition 1.10.1(Ch-1), we have

S(x, y, z) � b(S(x, x, a) + S(y, y, a) + S(z, z, a)) for all x, y, z, a ∈ X.

By using above condition, we have,

S(yn, ym, yl) � b(S(yn, yn, ym) + S(ym, ym, ym) + S(yl, yl, ym))

Letting n,m, l →∞.
We obtain |S(yn, ym, yl)| → 0.

Thus {yn} is Complex valued Sb-Cauchy sequence.

Now suppose fX is a complete subspace of X. Since y2n+2 = fx2n+2 ∈ f(X)

and {yn} is a Sb- Cauchy sequence, there exists z ∈ f(X) such that y2n+2 → z

as n→∞. Then there exists u ∈ X such that fu = z.

Thus lim
n→∞

Fx2n = lim
n→∞

gx2n+1 = lim
n→∞

Gx2n+1 = lim
n→∞

fx2n+2 = z.

Now we show that Fu = fu = z.

S(Fu, Fu, z)

� b[2S(Fu, Fu,Gx2n+1) + S(z, z,Gx2n+1]

= 2b S(Fu, Fu,Gx2n+1) + bS(z, z, Gx2n+1)
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� 2b α max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(fu, fu, gx2n+1), S(fu, fu, Fu),

S(gx2n+1, gx2n+1, Gx2n+1),

S(fu,fu,Fu)S(gx2n+1,gx2n+1,Gx2n+1)
1+S(Fu,Fu,Gx2n+1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ bS(z, z,Gx2n+1)

letting n→∞, we get

|S(Fu, Fu, z)| ≤ 2b α max

⎧⎪⎨
⎪⎩
|S(z, z, z)| , |S(z, z, Fu)| ,
|S(z, z, z)| , |S(z,z,Fu)||S(z,z,z)|

|1+S(Fu,Fu,z)|

⎫⎪⎬
⎪⎭+ b |S(z, z, z)|

= 2b α |S(Fu, Fu, z)|
(1− 2b α) |S(Fu, Fu, z)| ≤ 0.

Since 0 < α < 1
2b

, we get |S(Fu, z, z)| ≤ 0.

Thus |(S(Fu, z, z)| = 0.

Hence Fu = z. Thus fu = Fu = z.

Since FX ⊆ gX, there exists v ∈ X such that Fu = gv.

Thus fu = Fu = gv = z.

Now we prove that Gv = gv = z.

S(z, z,Gv)

= S(Gv,Gv, z)

� b [2S(Gv,Gv, Fx2n) + S(z, z, Fx2n)]

= 2bS(Gv,Gv, Fx2n) + bS(z, z, Fx2n)

= 2bS(Fx2n, Fx2n, Gv) + bS(z, z, Fx2n)

� 2b α max

⎧⎪⎨
⎪⎩

S(fx2n, fx2n, gv), S(fx2n, fx2n, Fx2n),

S(gv, gv,Gv), S(fx2n,fx2n,Fx2n)S(gv,gv,Gv)
|1+S(Fx2n,Fx2n,Gv)

⎫⎪⎬
⎪⎭+ bS(z, z, Fx2n)
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letting n→∞

S(z, z,Gv) = 2b α max

⎧⎪⎨
⎪⎩

S(z, z, z), S(z, z, z),

S(z, z,Gv), S(z,z,z)S(z,z,Gv)
1+S(z,z,Gv)

⎫⎪⎬
⎪⎭+ bS(z, z, z)

= 2b α S(z, z, Gv)

|S(z, z,Gv)| ≤ 2b |αS(z, z,Gv)|
(1− 2b α)|S(z, z, Gv)| ≤ 0.

Since 0 < α < 1
2b

such that |S(z, z, Gv)| ≤ 0. It implies that |S(z, z, Gv)| = 0.

Thus Gv = z. Hence Gv = z = fu = Fu = gv. (4)

Since (F, f) is weakly compatible, we have

fz = fFu = Ffu = Fz. (5)

Now

S(Fz, Fz, z) � 2bS(Fz, Fz,Gx2n+1) + bS(z, z,Gx2n+1)

� 2b α max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(fz, fz, gx2n+1), S(fz, fz, Fz),

S(gx2n+1, gx2n+1, Gx2n+1),

S(fz,fz,Fz)S(gx2n+1,gx2n+1,Gx2n+1)
1+S(Fz,Fz,Gx2n+1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ bS(z, z, Gx2n+1)

letting n→∞, we have

S(Fz, Fz, z) � 2b α max

⎧⎪⎨
⎪⎩

S(Fz, Fz, z), S(Fz, Fz, Fz),

S(z, z, z), S(Fz,Fz,Fz)S(z,z,z)
1+S(Fz,Fz,z)

⎫⎪⎬
⎪⎭+ bS(z, z, z)

= 2b α S(Fz, Fz, z)

|S(Fz, Fz, z)| ≤ 2b α |S(Fz, Fz, z)|
(1− 2b α) |S(Fz, Fz, z)| ≤ 0.

Since 0 < α < 1
2b

, we get |S(Fz, Fz, z)| ≤ 0.

It implies that |S(Fz, Fz, z)| = 0. Hence Fz = z.

Thus z = fz = Fz. (6)
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Since the pair (G, g) is weakly compatible, we have gz = gGv = Ggv = Gz.

Now

S(z, z,Gz)

= S(Gz,Gz, z)

� 2bS(Gz,Gz, Fx2n+1) + bS(z, z, Fx2n+1)

= 2bS(Fx2n+1, Fx2n+1, Gz) + bS(z, z, Fx2n+1)

� 2b α max

⎧⎪⎨
⎪⎩

S(fx2n+1, fx2n+1, gz), S(fx2n+1, fx2n+1, Fx2n+1),

S(gz, gz,Gz), S(fx2n+1,fx2n+1,Fx2n+1)S(gz,gz,Gz)
1+S(Fx2n+1,Fx2n+1,Gz)

⎫⎪⎬
⎪⎭

+bS(z, z, Fx2n+1)

letting n→∞, we have

S(z, z, Gz) = 2b α max

⎧⎪⎨
⎪⎩

S(z, z, z), S(z, z, z),

S(z, z,Gz), S(z,z,z)S(z,z,Gz)
1+S(z,z,Gz)

⎫⎪⎬
⎪⎭+ bS(z, z, z)

= 2b α S(z, z,Gz)

|S(z, z, Gz)| ≤ α |S(z, z, Gz)|
(1− 2bα) |S(z, z,Gz)| ≤ 0.

Since 0 < α < 1
2b

, we get |S(z, z, Gz)| ≤ 0. It imples that |S(z, z, Gz)| = 0.

Hence Gz = gz = z. (7)

Thus from (6) and (7), z is a common fixed point of F,G, f and g.

For uniqueness,

let z∗ ∈ X be such that fz∗ = Fz∗ = z∗ = gz∗ = Gz∗.

S(z, z, z∗) = S(Fz, Fz,Gz∗)

� α max

⎧⎪⎨
⎪⎩

S(fz, fz, gz∗), S(fz, fz, Fz),

S(gz∗, gz∗, Gz∗), S(fz,fz,Fz)S(gz∗,gz∗,Gz∗)
1+S(Fz,Fz,Gz∗)

⎫⎪⎬
⎪⎭
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= α max

⎧⎪⎨
⎪⎩

S(z, z, z∗), S(z, z, z),

S(z∗, z∗, z∗), S(z,z,z)S(z∗,z∗,z∗)
1+S(z,z,z∗)

⎫⎪⎬
⎪⎭

= α S(z, z, z∗)

|S(z, z, z∗)| ≤ α |S(z, z, z∗)|
(1− α) |S(z, z, z∗)| ≤ 0.

Since 0 < α < 1
2b
< 1, we get |S(z, z, z∗)| ≤ 0.

It implies that |S(z, z, z∗)| = 0.

Hence z = z∗.

Thus z is the unique common fixed point of F,G, f and g.

Now we give an example to illustrate our main Theorem 5.1.2

Example 5.1.3. Let X = [0, 1] and Sb : X3 → C be defined by

Sb(x, y, z) = |x− z|+ i |y − z|. Then X is a complex valued Sb-metric space.

Define F,G, f and g : X → X by Fx = x4

84
,Gx = x8

48
,fx = x4

24
and

gx = x8

44
for all x ∈ X. With α = 1

11
< 1.

Consider

|S(Fx, Fx,Gy)| =
∣∣∣S (x4

84
, x4

84
, y8

48

)∣∣∣
=
∣∣∣x4

84
− y8

48

∣∣∣+ i
∣∣∣x4

84
− y8

48

∣∣∣
= 1

16

[∣∣∣x4

24
− y8

44

∣∣∣+ i
∣∣∣x4

24
− y8

44

∣∣∣]
= 1

16
|S(fx, fx, gy)|

< 1
11
|S(fx, fx, gy)|

= α |S(fx, fx, gy)|

≤ α max

⎧⎪⎨
⎪⎩
|S(fx, fx, gy)| , |S(fx, fx, Fx)| , |S(gy, gy,Gy)| ,
|S(fx,fx,Fx)||S(gy,gy,Gy)|

|1+S(Fx,Fx,Gy)|

⎫⎪⎬
⎪⎭ .

Thus (5.1.2.4) is satisfied.

One can easily verify remaining conditions of Theorem 5.1.2.
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Clearly x = 0 is the unique common fixed point of F,G, f and g.

From Theorem 5.1.2, we have the following corollary.

Corollary 5.1.4. Let (X,S) be a complete complex valued Sb - metric

space with coefficient b > 1 and f : X → X be mapping satisfying for all

x, y ∈ X
S(fx, fx, fy) � α max{S(x, x, y), S(x, x, fx), S(y, y, fy), S(x,x,fx)S(y,y,fy)

1+S(fx,fx,fy)
}

where 0 < α < 1. Then f has a unique fixed point.
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SECTION 5.2: EXISTENCE AND UNIQUENESS OF COUPLED

SUZUKI TYPE RESULT IN Sb METRIC SPACES

In the year 2008, Suzuki[103] generalized the Banach contraction principle

[84] as follows.

Theorem 5.2.1. (Suzuki [103]): Let (X, d) be a complete metric space and

let T be a mapping on X. Define a non-increasing function θ : [0, 1)→ (
1
2
, 1
]

by

θ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

(1− r)r−2

(1 + r)−1

if 0 ≤ r ≤ (
√
5−1)
2

,

if (
√
5−1)
2
≤ r ≤

if 2−
1
2 ≤ r < 1.

2−
1
2 ,

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists a unique fixed point z of T . Moreover

limn T
nx = z for all x ∈ X.

In the year 2016 S.Sedghi et al.[89] proved the following theorem in Sb-

metric spaces.

Theorem 5.2.2. (S.Sedghi et al [89]): Suppose that f, g,M and T are self

mappings on a complete Sb-metric space (X,S) such that f(X) ⊆ T (X),

g(X) ⊆M(X). If

S(fx, fx, gy) ≤ q

b4
max

⎧⎪⎨
⎪⎩

S(Mx,Mx, Ty), S(fx, fx,Mx), S(gy, gy, Ty)

1
2
[S(Mx,Mx, gy) + S(fx, fx, Ty)

⎫⎪⎬
⎪⎭

holds for each x, y ∈ X with 0 < q < 1 and b ≥ 3
2

then f, g,M and T have a

unique common fixed point in X provided that M and T are continuous and

pairs {f,M} and {g, T} are compatible.
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In this section, we generalize the Theorem 5.2.2 and obtain a Suzuki type

common coupled fixed point theorem in Sb-metric spaces. We also furnish an

example which supports our main result.

Now we give our main theorem.

Theorem 5.2.3 Let (X,Sb) be a Sb-metric space. Suppose that

C,D : X ×X → X and P,Q : X → X be satisfying

(5.2.3.1) C(X ×X) ⊆ Q(X), D(X ×X) ⊆ P (X),

(5.2.3.2) {C,P} and {D,Q} are w-compatible pairs,

(5.2.3.3) one of P (X) or Q(X) is Sb-complete subspace of X,

(5.2.3.4)

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(C(x, y), C(x, y), Px), Sb(D(u, v), D(u, v), Qu),

Sb(C(y, x), C(y, x), Py), Sb(D(v, u), D(v, u), Qv)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

Sb(Px, Px,Qu),

Sb(Py, Py,Qv)

⎫⎪⎬
⎪⎭

implies that

ψ (Sb(C(x, y), C(x, y), D(u, v))) ≤ 1

5b7
ψ (M (x, y, u, v))− φ (M (x, y, u, v))

for all x, y, u, v in X, where ψ, φ : R+ → R+ are such that ψ is linear and

monotone increasing function and φ is lower semi continuous, ψ(0) = φ(0) = 0

and φ(t) > 0, for all t > 0 and

M (x, y, u, v) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(Px, Px,Qu), Sb(Py, Py,Qv),

Sb(C(x, y), C(x, y), Px), Sb(C(y, x), C(y, x), Py),

Sb(D(u, v), D(u, v), Qu), Sb(D(v, u), D(v, u), Qv),

1
4b2

[Sb(C(x, y), C(x, y), Qu) + Sb(D(u, v), D(u, v), Px)] ,

1
4b2

[Sb(C(y, x), C(y, x), Qv) + Sb(D(v, u), D(v, u), Py)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Then C,D, P and Q have a unique common coupled fixed point in X ×X.

Proof: Let x0, y0 ∈ X. From (5.2.3.1), we can construct the sequences

{xn}, {yn}, {zn} and {wn} such that

C(x2n, y2n) = Qx2n+1 = z2n,

C(y2n, x2n) = Qy2n+1 = w2n,

D(x2n+1, y2n+1) = Px2n+2 = z2n+1,

D(y2n+1, x2n+1) = Py2n+2 = w2n+1, n = 0, 1, 2, · · ·

Case (i): Suppose z2m = z2m+1 and w2m = w2m+1 for some m.

Assume that z2m+1 �= z2m+2 or w2m+1 �= w2m+2.

Since

1
8b3

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sb(C(x2m+2, y2m+2), C(x2m+2, y2m+2), Px2m+2),

Sb(D(x2m+1, y2m+1), D(x2m+1, y2m+1), Qx2m+1),

Sb(C(y2m+2, x2m+2), C(y2m+2, x2m+2), Py2m+2),

Sb(D(y2m+1, x2m+1), D(y2m+1, x2m+1), Qy2m+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

≤ max

{
Sb(Px2m+2, Px2m+2, Qx2m+1), Sb(Py2m+2, Py2m+2, Qy2m+1)

}
.

From (5.2.3.4), we have

ψ (Sb(C(x2m+2, y2m+2), C(x2m+2, y2m+2), D(x2m+1, y2m+1)))

≤ 1

5b7
ψ (M (x2m+2, y2m+2, x2m+1, y2m+1))−φ (M (x2m+2, y2m+2, x2m+1, y2m+1))
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where

M (x2m+2, y2m+2, x2m+1, y2m+1)

= max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2m+1, z2m+1, z2m), Sb(w2m+1, w2m+1, w2m),

Sb(z2m+2, z2m+2, z2m+1), Sb(w2m+2, w2m+2, w2m+1),

Sb(z2m+1, z2m+1, z2m), Sb(w2m+1, w2m+1, w2m),

1
4b2

[Sb(z2m+2, z2m+2, z2m+1) + Sb(z2m+1, z2m+1, z2m)],

1
4b2

[Sb(w2m+2, w2m+2, w2m+1) + Sb(w2m+1, w2m+1, w2m)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= max

{
Sb(z2m+2, z2m+2, z2m+1), Sb(w2m+2, w2m+2, w2m+1)

}
.

Thus

ψ (Sb (z2m+2, z2m+2, z2m+1)) ≤ 1
5b7
ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb (z2m+2, z2m+2, z2m+1) ,

Sb (w2m+2, w2m+2, w2m+1)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

−φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb (z2m+2, z2m+2, z2m+1) ,

Sb (w2m+2, w2m+2, w2m+1)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

Similarly, we can prove

ψ (Sb (w2m+2, w2m+2, w2m+1))

≤ 1
5b7
ψ

(
max

{
Sb (z2m+2, z2m+2, z2m+1) , Sb (w2m+2, w2m+2, w2m+1)

})

−φ
(

max

{
Sb (z2m+2, z2m+2, z2m+1) , Sb (w2m+2, w2m+2, w2m+1)

})
.

It follows that

ψ

(
max

{
Sb (z2m+2, z2m+2, z2m+1) , Sb (w2m+2, w2m+2, w2m+1)

})

≤ 1
5b7
ψ

(
max

{
Sb (z2m+2, z2m+2, z2m+1) , Sb (w2m+2, w2m+2, w2m+1)

})

−φ
(

max

{
Sb (z2m+2, z2m+2, z2m+1) , Sb (w2m+2, w2m+2, w2m+1)

})
.

It follows that z2m+2 = z2m+1 and w2m+2 = w2m+1.

Continuing in this process we can conclude that z2m+k = z2m and w2m+k = w2m
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for all k ≥ 0.

It follows that {z2m} and {w2m} are Cauchy sequences.

Case (ii): Assume that z2n �= z2n+1 and w2n �= w2n+1 for all n.

Put Sn = max {Sb(zn+1, zn+1, zn), Sb(wn+1, wn+1, wn)}.
Since

1
8b3

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sb(C(x2n+2, y2n+2), C(x2n+2, y2n+2), Px2n+2),

Sb(D(x2n+1, y2n+1), D(x2n+1, y2n+1), Qx2n+1),

Sb(C(y2n+2, x2n+2), C(y2n+2, x2n+2), Py2n+2),

Sb(D(y2n+1, x2n+1), D(y2n+1, x2n+1), Qy2n+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

≤ max

{
Sb(Px2n+2, Px2n+2, Qx2n+1), Sb(Py2n+2, Py2n+2, Qy2n+1)

}
.

From (5.2.3.4), we have

ψ (Sb(z2n+2, z2n+2, z2n+1)) ≤ 1
5b7

ψ (M (x2m+2, y2m+2, x2m+1, y2m+1))

−φ (M (x2m+2, y2m+2, x2m+1, y2m+1)) .

Here

M (x2m+2, y2m+2, x2m+1, y2m+1)

= max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),

Sb(z2n+2, z2n+2, z2n+1), Sb(w2n+2, w2n+2, w2n+1),

Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),

1
4b2

[Sb(z2n+2, z2n+2, z2n) + Sb(z2n+1, z2n+1, z2n+1)],

1
4b2

[Sb(w2n+2, w2n+2, w2n) + Sb(w2n+1, w2n+1, w2n+1)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= max

⎧⎪⎨
⎪⎩

Sb(z2n+1, z2n+1, z2n), Sb(z2n+2, z2n+2, z2n+1),

Sb(w2n+1, w2n+1, w2n), Sb(w2n+2, w2n+2, w2n+1)

⎫⎪⎬
⎪⎭

= max

{
S2n+1, S2n

}
.

103



Therfore

ψ (Sb(z2n+2, z2n+2, z2n+1))

≤ 1
5b7

ψ

(
max

{
S2n+1, S2n

})
− φ

(
max

{
S2n+1, S2n

})
.

Similarly, we can prove that

ψ (Sb(w2n+2, w2n+2, w2n+1))

≤ 1
5b7

ψ

(
max

{
S2n+1, S2n

})
− φ

(
max

{
S2n+1, S2n

})
.

Thus

ψ (S2n+1) ≤ 1
5b7

ψ

(
max

{
S2n+1, S2n

})
− φ

(
max

{
S2n+1, S2n

})
.

If S2n+1 is maximum then we get contradiction so that S2n is maximum.

Thus

ψ (S2n+1) ≤ 1

5b7
ψ (S2n)− φ (S2n) (1)

< ψ (S2n) .

Similarly we can conclude that ψ (S2n) < ψ (S2n−1).

Since ψ is non - decreasing and continuous, it is clear that {Sn} is a non-

increasing sequence of non-negative real numbers and must converges to a real

number say k ≥ 0.

Suppose k > 0.

Letting n→∞, in (1), we have ψ(k) ≤ 1
5b7

ψ(k)− φ(k) < ψ(k).

It is contradiction. Hence k = 0

Thus

lim
n→∞

Sb(zn+1, zn+1, zn) = 0 (2)

and

lim
n→∞

Sb(wn+1, wn+1, wn) = 0. (3)
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Now we prove that {z2n} and {w2n} are Cauchy sequences in (X,S).

On contrary we suppose that {z2n} or {w2n} is not Cauchy. Then there exist

ε > 0 and monotonically increasing sequence of natural numbers {2mk} and

{2nk} such that nk > mk.

max{Sb(z2mk
, z2mk

, z2nk), Sb(w2mk
, w2mk

, w2nk)} ≥ ε (4)

and

max{Sb(z2mk
, z2mk

, z2nk−2
), Sb(w2mk

, w2mk
, w2nk−2

)} < ε. (5)

From (4) and (5), we have

ε ≤ Mk = max{Sb(z2mk
, z2mk

, z2nk), Sb(w2mk
, w2mk

, w2nk)}

≤ 2bmax{Sb(z2mk
, z2mk

, z2mk+2), Sb(w2mk
, w2mk

, w2mk+2)}

+b2max{Sb(z2mk+2, z2mk+2, z2nk), Sb(w2mk+2, w2mk+2, w2nk)}

≤ 4b2max{Sb(z2mk
, z2mk

, z2mk+1), Sb(w2mk
, w2mk

, w2mk+1)}

+2b3max{Sb(z2mk+1, z2mk+1, z2mk+2), Sb(w2mk+1, w2mk+1, w2mk+2)}

+2b3max{Sb(z2mk+2, z2mk+2, z2nk+1), Sb(w2mk+2, w2mk+2, w2nk+1)}

+b5max{Sb(z2nk , z2nk , z2nk+1), Sb(w2nk , w2nk , w2nk+1)}.

Letting k →∞ and apply ψ on both sides, we have that

ψ
( ε

2b3

)
≤ lim

k→∞
ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

sb(z2mk+2, z2mk+2, z2nk+1)

sb(w2mk+2, w2mk+2, w2nk+1)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ . (6)
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Now first we claim that

1
8b3

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sb(C(x2mk+2, y2mk+2), C(x2mk+2, y2mk+2), Px2mk+2),

Sb(D(x2nk+1, y2nk+1), D(x2nk+1, y2nk+1), Qx2nk+1),

Sb(C(y2mk+2, x2mk+2), C(y2mk+2, x2mk+2), Py2mk+2),

Sb(D(y2nk+1, x2nk+1), D(y2nk+1, x2nk+1), Qy2nk+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

≤ max

⎧⎪⎨
⎪⎩

Sb(Px2mk+2, Px2mk+2, Qx2nk+1),

Sb(Py2mk+2, Py2mk+2, Qy2nk+1)

⎫⎪⎬
⎪⎭ . (7)

On contrary suppose that

1
8b3

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sb(C(x2mk+2, y2mk+2), C(x2mk+2, y2mk+2), Px2mk+2),

Sb(D(x2nk+1, y2nk+1), D(x2nk+1, y2nk+1), Qx2nk+1),

Sb(C(y2mk+2, x2mk+2), C(y2mk+2, x2mk+2), Py2mk+2),

Sb(D(y2nk+1, x2nk+1), D(y2nk+1, x2nk+1), Qy2nk+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

> max

{
Sb(Px2mk+2, Px2mk+2, Qx2nk+1), Sb(Py2mk+2, Py2mk+2, Qy2nk+1)

}
.

Now from (4), we have

ε ≤ max{Sb(z2mk
, z2mk

, z2nk), Sb(w2mk
, w2mk

, w2nk)}
≤ 2bmax{Sb(z2mk

, z2mk
, z2mk+1), Sb(w2mk

, w2mk
, w2mk+1)}

+b2max{Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk)}
< 2bmax{Sb(z2mk

, z2mk
, z2mk+1), Sb(w2mk

, w2mk
, w2mk+1)}

+b2 1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk)

⎫⎪⎬
⎪⎭ .

Letting k →∞, we have ε ≤ 0. It is a contradiction.

Hence the claim is holds that is (7) holds.

Now from (5.2.3.4), we have
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ψ (Sb(z2mk+2, z2mk+2, z2mk+1))

≤ 1
5b7

ψ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2

[Sb(z2mk+2, z2mk+2, z2nk) + Sb(z2nk+1, z2nk+1, z2mk+1)],

1
4b2

[Sb(w2mk+2, w2mk+2, w2nk) + Sb(w2nk+1, w2nk+1, w2mk+1)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2

[Sb(z2mk+2, z2mk+2, z2nk) + Sb(z2nk+1, z2nk+1, z2mk+1)],

1
4b2

[Sb(w2mk+2, w2mk+2, w2nk) + Sb(w2nk+1, w2nk+1, w2mk+1)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly

ψ (Sb(w2mk+2, w2mk+2, w2mk+1))

≤ 1
5b7

ψ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2

[Sb(z2mk+2, z2mk+2, z2nk) + Sb(z2nk+1, z2nk+1, z2mk+1)],

1
4b2

[Sb(w2mk+2, w2mk+2, w2nk) + Sb(w2nk+1, w2nk+1, w2mk+1)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2

[Sb(z2mk+2, z2mk+2, z2nk) + Sb(z2nk+1, z2nk+1, z2mk+1)],

1
4b2

[Sb(w2mk+2, w2mk+2, w2nk) + Sb(w2nk+1, w2nk+1, w2mk+1)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Thus

ψ

(
max

{
Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1)

})

≤ 1

5b7
ψ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2

⎡
⎢⎣ Sb(z2mk+2, z2mk+2, z2nk)

+Sb(z2nk+1, z2nk+1, z2mk+1)

⎤
⎥⎦ ,

1
4b2

⎡
⎢⎣ Sb(w2mk+2, w2mk+2, w2nk)

+Sb(w2nk+1, w2nk+1, w2mk+1)

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2

⎡
⎢⎣ Sb(z2mk+2, z2mk+2, z2nk)

+Sb(z2nk+1, z2nk+1, z2mk+1)

⎤
⎥⎦,

1
4b2

⎡
⎢⎣ Sb(w2mk+2, w2mk+2, w2nk)

+Sb(w2nk+1, w2nk+1, w2mk+1)

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

But
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max{Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk)}

≤ 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}
+b2max{Sb(z2mk

, z2mk
, z2nk), Sb(w2mk

, w2mk
, w2nk)}

≤ 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}
+b2

(
2bmax{Sb(z2mk

, z2mk
, z2nk−2

), Sb(w2mk
, w2mk

, w2nk−2
)})

+b2 (b2max{Sb(z2nk−2, z2nk−2, z2nk), Sb(w2nk−2, w2nk−2, w2nk)})
≤ 2b2max{Sb(z2mk

, z2mk
, z2mk+1), Sb(w2mk

, w2mk
, w2mk+1)}

+2b3ε+ 2b5max{Sb(z2nk−1, z2nk−1, z2nk), Sb(w2nk−1, w2nk−1, w2nk)}
+b6max{Sb(z2nk−1, z2nk−1, z2nk), Sb(w2nk−1, w2nk−1, w2nk)}.

Letting k →∞, we have

lim
k→∞

max{Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk)} ≤ 2b3ε.

Also

lim
k→∞

1
4b2

[Sb(z2mk+2, z2mk+2, z2nk) + Sb(z2nk+1, z2nk+1, z2mk+1)]

≤ lim
k→∞

1
4b2

⎡
⎢⎣ 2bSb(z2mk+2, z2mk+2, z2mk+1) + b2Sb(z2mk+1, z2mk+1, z2nk)+

2bSb(z2nk+1, z2nk+1, z2nk) + b2Sb(z2nk , z2nk , z2mk+1)

⎤
⎥⎦

≤ lim
k→∞

1
4b2

[b3Sb(z2mk+1, z2mk+1, z2nk) + b2Sb(z2mk+1, z2mk+1, z2nk)]

≤ 1
4b2

[2b6ε+ 2b5ε]

≤ (1+b)2b5ε
4b2

= b4ε.

Similarly

lim
k→∞

1

4b2
[Sb(z2mk+2, z2mk+2, z2nk) + Sb(w2nk+1, w2nk+1, w2mk+1)] ≤ b4ε.
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Letting k →∞ in (8), we have

lim
k→∞

ψ

(
max

{
Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1)

})

≤ 1
5b7
ψ (max{2b3ε, 0, 0, 0, 0, b4ε, b4ε})

− lim
k→∞

φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(z2mk+1, z2mk+1, z2nk), Sb(w2mk+1, w2mk+1, w2nk),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),

Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk),

1
4b2
Sb(z2mk+2, z2mk+2, z2nk) + Sb(z2nk+1, z2nk+1, z2mk+1),

1
2b
Sb(w2mk+2, w2mk+2, w2nk) + Sb(w2nk+1, w2nk+1, w2mk+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1
5b7
ψ (max{2b3ε, b4ε}) .

Therefore

lim
k→∞

ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(z2mk+2, z2mk+2, z2mk+1),

Sb(w2mk+2, w2mk+2, w2mk+1)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ ≤ 1

5b7
ψ (max{2b3ε, b4ε}) .(9)

Now letting n→∞ in (6), from (2), (3) and (9), we have

ψ
( ε

2b3

)
≤ 1

5b7
ψ
(
max{2b3ε, b4ε}) .

Subcase(i) : If 2b3ε is maximum, by the definition of ψ, we have that

b2 ≤ 4

5
.

It is a contradiction.

Subcase(ii) : If b4ε is maximum, by the definition of ψ, we have that

b ≤ 2

5
.

It is a contradiction.

Hence {z2n} and {w2n} are Sb-Cauchy sequences in (X,S).
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In addition

max{Sb(z2n+1, z2n+1, z2m+1), Sb(w2n+1, w2n+1, w2m+1)}

≤ 2bmax{Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n)}
+b2max{Sb(z2n, z2n, z2m+1), Sb(w2n, w2n, w2m+1)}

≤ 2b2max{Sb(z2n, z2n, z2n+1), Sb(w2n, w2n, w2n+1)}
+2b3max{Sb(z2n, z2n, z2m), Sb(w2n, w2n, w2m)}
+b4max{Sb(z2m, z2m, z2m+1), Sb(w2m, w2m, w2m+1)}.

It is clear that

Sb(z2n+1, z2n+1, z2m+1) < ε as n,m→∞

and

Sb(w2n+1, w2n+1, w2m+1) < ε as n,m→∞.

Therefore {z2n+1} and {w2n+1} are also Sb-Cauchy sequences in (X,S).

Hence {zn} and {wn} are Sb-Cauchy sequences in (X,S).

Suppose P (X) is Sb- complete subspace of (X,S). Then the sequences {z2n+1}
and {w2n+1} are converges to α and β in P (X). Thus there exist a and b in

P (X) such that

lim
n→∞

zn = α = Pa and lim
n→∞

wn = β = Pb. (10)

Before going to proving common coupled fixed point for the mappings C,D, P

and Q, first we claim that for each n ≥ 1 at least one of the following assertion

is holds.

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2n+1, z2n+1, z2n),

Sb(w2n+1, w2n+1, w2n)

⎫⎪⎬
⎪⎭ ≤ max

{
Sb(α, α, z2n), Sb(β, β, w2n)

}

or
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1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭ ≤ max

{
Sb(α, α, z2n−2), Sb(β, β, w2n−2)

}
.

On contrary suppose that

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2n+1, z2n+1, z2n),

Sb(w2n+1, w2n+1, w2n)

⎫⎪⎬
⎪⎭ > max

{
Sb(α, α, z2n), Sb(β, β, w2n)

}

and

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭ > max

{
Sb(α, α, z2n−1), Sb(β, β, w2n−1)

}
.

Now consider

min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭

≤ min

⎧⎪⎨
⎪⎩

2bSb(z2n, z2n, α) + b2Sb(α, α, z2n−1),

2bSb(w2n, w2n, β) + b2Sb(β, β, z2n−1)

⎫⎪⎬
⎪⎭

≤ 2b2max

⎧⎪⎨
⎪⎩

Sb(α, α, z2n),

Sb(β, β, w2n)

⎫⎪⎬
⎪⎭+ b2max

⎧⎪⎨
⎪⎩

Sb(α, α, z2n−1),

Sb(β, β, z2n−1)

⎫⎪⎬
⎪⎭

< 1
4b

min

⎧⎪⎨
⎪⎩

Sb(z2n+1, z2n+1, z2n),

Sb(w2n+1, w2n+1, w2n)

⎫⎪⎬
⎪⎭+ 1

8b
min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭

≤ 1
4b

min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭+ 1

8b
min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭

= 3
8b

min

{
Sb(z2n, z2n, z2n−1),Sb(w2n, w2n, w2n−1)

}
.
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It is a contradiction.

Hence our assertion is holds.

Sub case(a): 1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2n+1, z2n+1, z2n),

Sb(w2n+1, w2n+1, w2n)

⎫⎪⎬
⎪⎭ ≤ max

{
Sb(α, α, z2n), Sb(β, β, w2n)

}

is holds.

Now we have to prove that C(a, b) = α and C(b, a) = β.

On contrary suppose that C(a, b) �= α or C(b, a) �= β.

Since

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(C(a, b), C(a, b), α), Sb(z2n+1, z2n+1, z2n),

Sb(C(b, a), C(b, a), β), Sb(w2n+1, w2n+1, w2n)

⎫⎪⎬
⎪⎭

≤ max {Sb(α, α, z2n), Sb(β, β, w2n)}

From (5.2.3.4), by deinition of ψ and Lemma 1.9.9(Ch-1), we have

ψ
(
1
4b2
Sb (C(a, b), C(a, b), α)

)
≤ lim

n→∞
inf ψ (Sb (C(a, b), C(a, b), D(x2n+1, y2n+1)))

≤ 1
5b7

lim
n→∞

inf ψ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(α, α, z2n), Sb(β, β, w2n),

Sb (C(a, b), C(a, b), α) ,

Sb (C(b, a), C(b, a), β) ,

1
2b

⎡
⎢⎣ Sb (C(a, b), C(a, b), Qx2n+1) +

Sb (z2n+1, z2n+1, α)

⎤
⎥⎦ ,

1
4b2

⎡
⎢⎣ Sb (C(b, a), C(b, a), z2n) +

Sb (w2n+1, w2n+1, β)

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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− lim
n→∞

inf φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sb(α, α, z2n), Sb(β, β, w2n),

Sb (C(a, b), C(a, b), α) ,

Sb (C(b, a), C(b, a), β) ,

1
2b

⎡
⎢⎣ Sb (C(a, b), C(a, b), Qx2n+1) +

Sb (z2n+1, z2n+1, α)

⎤
⎥⎦ ,

1
4b2

⎡
⎢⎣ Sb (C(b, a), C(b, a), z2n) +

Sb (w2n+1, w2n+1, β)

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
5b7
ψ (max {Sb (C(a, b), C(a, b), α) , Sb (C(b, a), C(b, a), β)})

Similarly

ψ
(
1
4b2
Sb (C(b, a), C(b, a), β)

)
≤ 1

5b7
ψ

(
max

{
Sb (C(b, a), C(b, a), α)Sb (C(b, a), C(b, a), β)

})

Thus

ψ

⎛
⎜⎝ 1
4b2

max

⎧⎪⎨
⎪⎩

Sb(C(a, b), C(a, b), α),

Sb(C(b, a), C(b, a), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ ≤ 1

5b7
ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(C(a, b), C(a, b), α),

Sb(C(b, a), C(b, a), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

By the definition of ψ, it follows that C(a, b) = α = Pa and C(b, a) = β = Pb.

Since (C,P ) is w-compatible pair, we have C(α, β) = Pα and C(β, α) = Pβ.

From the definition of Sb-metric it is clear that

1
8b3

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sb(C(α, β), C(α, β), Pα), Sb(C(β, α), C(β, α), Pβ)

Sb(D(x2n+1, y2n+1), D(x2n+1, y2n+1), Qx2n+1),

Sb(D(y2n+1, x2n+1), D(y2n+1, x2n+1), Qy2n+1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ max

{
Sb(Pα, Pα,Qx2n+1), Sb(Pβ, Pβ,Qy2n+1)

}
.
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From (5.2.3.4), by the definition of ψ and Lemma 1.9.9(Ch-1), we have

ψ
(
1
4b2
Sb(C(α, β), C(α, β), α

)
≤ lim

n→∞
supψ (Sb(C(α, β), C(α, β), D(x2n+1, y2n+1)))

≤ 1
5b7

lim
n→∞

sup ψ

⎛
⎜⎜⎜⎜⎝max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sb(C(α, β), C(α, β), z2n), Sb(C(β, α), C(β, α), w2n),

Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),

Sb(z2n+1, z2n+1, C(α, β)), Sb(w2n+1, w2n+1, C(β, α)),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠

− lim
n→∞

sup φ

⎛
⎜⎜⎜⎜⎝max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sb(C(α, β), C(α, β), z2n), Sb(C(β, α), C(β, α), w2n),

Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),

Sb(z2n+1, z2n+1, C(α, β)), Sb(w2n+1, w2n+1, C(β, α)),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠

≤ 1
5b7

ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

2bSb(C(α, β), C(α, β), α), 2bSb(C(β, α), C(β, α), β),

0, 0, b2Sb(α, α, C(α, β)), b2Sb(β, β, C(β, α)),

⎫⎪⎬
⎪⎭
⎞
⎟⎠

≤ 1
5b7

ψ

(
2b2max

{
Sb(C(α, β), C(α, β), α), Sb(C(β, α), C(β, α), β)

})
.

Similarly

ψ
(
1
4b2
Sb(C(β, α), C(β, α), β)

) ≤ 1
5b7

ψ

⎛
⎜⎝2b2max

⎧⎪⎨
⎪⎩

Sb(C(α, β), C(α, β), α),

Sb(C(β, α), C(β, α), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

Thus

ψ

⎛
⎜⎝ 1
4b2

max

⎧⎪⎨
⎪⎩

Sb(C(α, β), C(α, β), α),

Sb(C(β, α), C(β, α), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

≤ 1
5b7

ψ

⎛
⎜⎝2b2max

⎧⎪⎨
⎪⎩

Sb(C(α, β), C(α, β), α),

Sb(C(β, α), C(β, α), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

By the definition of ψ, it follows that

C(α, β) = α = Pα and C(β, α) = β = Pβ.
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Therefore (α, β) is common coupled fixed point of C and P .

Since C(X ×X) ⊆ Q(X) there exist x and y in X such that

C(α, β) = α = Qx and C(β, α) = β = Qy.

Since we have that

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(C(α, β), C(α, β), Pα), Sb(C(β, α), C(β, α), Pβ)

Sb(D(x, y), D(x, y), Qx), Sb(D(y, x), D(y, x), Qy)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

Sb(Pα, Pα,Qx),

Sb(Pβ, Pβ,Qy)

⎫⎪⎬
⎪⎭ .

From (5.2.3.4), we have

ψ (S(C(α, β), C(α, β), D(x, y)))

≤ 1
5b7

ψ

⎛
⎜⎝bmax

⎧⎪⎨
⎪⎩

Sb(α, α,D(x, y)),

Sb(β, β,D(y, x))

⎫⎪⎬
⎪⎭
⎞
⎟⎠− φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(D(x, y), D(x, y), α),

Sb(D(y, x), D(y, x), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

Similarly

ψ (Sb(β, β,D(y, x)))

≤ 1
5b7

φ

⎛
⎜⎝bmax

⎧⎪⎨
⎪⎩

Sb(α, α,D(x, y)),

Sb(β, β,D(y, x))

⎫⎪⎬
⎪⎭
⎞
⎟⎠− φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(D(x, y), D(x, y), α),

Sb(D(y, x), D(y, x), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

Thus

ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(α, α,D(x, y)),

Sb(β, β,D(y, x))

⎫⎪⎬
⎪⎭
⎞
⎟⎠

≤ 1
5b7

φ

⎛
⎜⎝bmax

⎧⎪⎨
⎪⎩

Sb(α, α,D(x, y)),

Sb(β, β,D(y, x))

⎫⎪⎬
⎪⎭
⎞
⎟⎠− φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(D(x, y), D(x, y), α),

Sb(D(y, x), D(y, x), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

It follows that D(x, y) = α = Qx and D(y, x) = β = Qy.

Since (D,Q) is w-compatible pair, we have D(α, β) = Qα and D(β, α, ) = Qβ.
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Since we have that

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(C(α, β), C(α, β), Pα), Sb(C(β, α), C(β, α), Pβ)

Sb(D(α, β), D(α, β), Qα), Sb(D(β, α), D(β, α), Qβ)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

Sb(Pα, Pα,Qα),

Sb(Pβ, Pβ,Qβ)

⎫⎪⎬
⎪⎭ .

From (5.2.3.4) we have

ψ (Sb(C(α, β), C(α, β), D(α, β)))

≤ 1
5b7

ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(α, α,D(α, β)), Sb(β, β,D(β, α)),

Sb(D(α, β), D(α, β), α), Sb(D(β, α), D(β, α), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

−φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(α, α,D(α, β)), Sb(β, β,D(β, α)),

Sb(D(α, β), D(α, β), α), Sb(D(β, α), D(β, α), β)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

≤ 1
5b7

ψ

(
bmax

{
Sb(α, α,D(α, β)), Sb(β, β,D(β, α))

})
.

Similarly

ψ (Sb(β, β,D(β, α)))

≤ 1
5b7

ψ

(
bmax

{
Sb(α, α,D(α, β)), Sb(β, β,D(β, α))

})
.

Thus

ψ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

Sb(α, α,D(α, β)),

Sb(β, β,D(β, α))

⎫⎪⎬
⎪⎭
⎞
⎟⎠ ≤ 1

5b7
ψ

⎛
⎜⎝bmax

⎧⎪⎨
⎪⎩

Sb(α, α,D(α, β)),

Sb(β, β,D(β, α))

⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

It follows that D(α, β) = α = Qα and D(β, α) = β = Qβ.

Therefore (α, β) is common coupled fixed point of C,D, P and Q.

To prove uniqueness let us take (α1, β1) is another common coupled fixed point
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of C,D, P and Q.

Since it is clear that

1
8b3

min

⎧⎪⎨
⎪⎩

Sb(C(α, β), C(α, β), Pα), Sb(C(β, α), C(β, α), Pβ),

Sb(D(α1, β1), D(α1, β1), Qα1), Sb(D(β1, α1), D(β1, α1), Qβ1)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

Sb(Pα, Pα,Qα
1),

Sb(Pβ, Pβ,Qβ
1)

⎫⎪⎬
⎪⎭ .

From (5.2.3.4), we have

ψ (Sb(α, α, α
1))

= ψ (Sb(C(α, β), C(α, β), D(α1, β1)))

≤ 1
5b7

ψ

⎛
⎜⎜⎜⎜⎝max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sb(α, α, α
1), Sb(β, β, β

1), Sb(α, α, α),

Sb(β, β, β), Sb(α
1, α1, α1), Sb(β

1, β1, β1),

1
4b2

[Sb(α, α, α
1) + Sb(α

1, α1, α)] , 1
4b2

[Sb(β, β, β
1) + Sb(β

1, β1, β)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠

−φ

⎛
⎜⎜⎜⎜⎝max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sb(α, α, α
1), Sb(β, β, β

1), Sb(α, α, α),

Sb(β, β, β), Sb(α
1, α1, α1), Sb(β

1, β1, β1),

1
4b2

[Sb(α, α, α
1) + Sb(α

1, α1, α)] , 1
4b2

[Sb(β, β, β
1) + Sb(β

1, β1, β)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠

≤ 1
5b7

ψ(bmax{Sb(α, α, α
1), Sb(β, β, β

1)}).

Similarly

ψ
(
Sb(β, β, β

1)
) ≤ 1

5b7
ψ(bmax{Sb(α, α, α

1), Sb(β, β, β
1)}).

Thus

ψ

(
max

{
Sb(α, α, α

1), Sb(β, β, β
1)

})
≤ 1

5b7
ψ(bmax{Sb(α, α, α

1), Sb(β, β, β
1)}).
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It follows that α = α1 and β = β1.

Hence (α, β) is unique common coupled fixed point of C,D, P and Q.

Similarly the remaining proof also follows when the Sub case(b) holds.

i.e. 1
8b3

min

⎧⎪⎨
⎪⎩

Sb(z2n, z2n, z2n−1),

Sb(w2n, w2n, w2n−1)

⎫⎪⎬
⎪⎭ ≤ max

{
Sb(α, α, z2n−1), Sb(β, β, w2n−1)

}

is holds.

Now we give an example to illustrate our main theorem.

Example 5.2.4. Let X = [0, 1] and S : X ×X ×X → R+ by

Sb(x, y, z) = (|y + z − 2x|+ |y − z|)2, then S is Sb metric space with b = 4.

Define C,D : X ×X → X and P,Q : X → X by C(x, y) = x+y

47
√
3
,

D = x+y

48
√
3
, P (x) = x

4
and Q(x) = x

16
. Also define ψ, φ : R+ → R+ by ψ(t) = t

and φ(t) = t
30b7

.

ψ (Sb(C(x, y), C(x, y), D(u, v)))

= (|C(x, y) +D(u, v)− 2C(x, y)|+ |C(x, y)−D(u, v)|)2

= (2 |C(x, y)−D(u, v)|)2

= 4
∣∣∣ x+y

47
√
3
− u+v
48
√
3

∣∣∣2

= 2
3

∣∣4x−u
48

+ 4y−v
48

∣∣2
≤ 1

6(45)2

(
max

{∣∣∣4x2−u2

16

∣∣∣ , ∣∣∣4y2−v2

16

∣∣∣})2
≤ 1

6(410)
max

{∣∣x
4
− u
16

∣∣2 , ∣∣y
4
− v
16

∣∣2}
= 1

6(410)
max

{
Sb(Px, Px,Qu), Sb(Py, Py,Qv), Sb(C(x, y), C(x, y), Px)

}

≤ 1
5b7

ψ (M (x, y, u, v))− φ (M (x, y, u, v))

Thus the condition (5.2.3.4) is satisfied.One can easily verify remaining con-

ditions of Theorem 5.2.3 and (0, 0) is unique common coupled fixed point of

C,D, P and Q.

119



Theorem 5.2.5. Let (X,S) be a complete Sb-metric space. Suppose that

A : X ×X → X be mapping satisfying

1
8b3

min

⎧⎪⎨
⎪⎩

S(A(x, y), A(x, y), x),

S(A(u, v), A(u, v), u),

⎫⎪⎬
⎪⎭ ≤ max

{
S(x, x, u),S(y, y, v)

}

implies that

ψ (S(A(x, y), A(x, y), A(u, v))) ≤ 1

5b7
ψ (M (x, y, u, v))− φ (M (x, y, u, v))

for all x, y, u, v in X, where ψ, φ : R+ → R+ are such that ψ is linear and

monotonically increasing function and φ is lower semi continuous,

ψ(0) = φ(0) = 0 and φ(t) > 0, for all t > 0 and

M (x, y, u, v) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(x, x, u), S(y, y, v), S(A(x, y), A(x, y), x),

S(A(y, x), A(y, x), y), S(A(u, v), A(u, v), u),

S(A(v, u), A(v, u), v),

1
4b2

[S(A(x, y), A(x, y), u) + S(A(u, v), A(u, v), x)] ,

1
4b2

[S(A(y, x), A(y, x), v) + S(A(v, u), A(v, u), y)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then A has a unique coupled fixed point in X ×X.
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CHAPTER 6

A NEW COMMON COUPLED FIXED POINT RESULT FOR

CONTRACTIVE MAPS INVOLVING DOMINATING

FUNCTIONS

In this chapter we establish a new common coupled fixed point theorem

for contractive inequalities using an auxiliary function which dominate the

ordinary metric function.

Now we extend the Salimi et al.[77] Definition 1.11.3(Ch-1) to Jungck type

maps of which one is a coupled map as follows.

Definition 6.1. Let (X, d) be a metric space and F : X × X → X and

g : X → X be mappings. Let α : X × X → R+. The pair (F, g) is said to

be α-admissible with respect to d if x, y ∈ X,α(gx, gy) ≥ d(gx, gy) implies

α(F (x, x), F (y, y)) ≥ d(F (x, x), F (y, y)).

Definition 6.2. Let X be a non-empty set, F : X ×X → X and

g : X → X be mappings.

(i) ([107]) An element (x, y) ∈ X ×X is called a coupled coincidence point

of F and g if gx = F (x, y) and gy = F (y, x).

(ii) ([107]) An element (x, y) ∈ X × X is called a common coupled fixed

point of F and g if gx = x = F (x, y) and gy = y = F (y, x).

(iii) ([56]) The pair (F, g) is w-compatible if g(F (x, y)) = F (gx, gy) and

g(F (y, x)) = F (gy, gx) whenever there exist x, y ∈ X with gx = F (x, y)

and gy = F (y, x).
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(iv) The pair (F, g) is commuting if g(F (x, y)) = F (gx, gy) and g(F (y, x)) =

F (gy, gx).

Definition 6.3. Let Φ be the family of non-decreasing and continuous

functions φ : R+ → R+ such that
∞∑

n=1

φn(t) <∞ for each t > 0. Clearly

φ(t) < t for t > 0 and φ(0) = 0.

In 2016 N.Hussain et al.[69] proved the following theorem.

Theorem 6.4.(N.Hussain et al.[69]): Let α : X ×X → R+ be a mapping

and (X, d) be a complete metric sapce. Let T be a self-mapping on X and the

following assertions hold.

(i) T is α-admissible mapping with respaect to d,

(ii) either T is continuous or,

(iii) if {xn} is a sequence in X such that α(xn, Tx) ≥ d(x, Tx)

for all n ∈ N
⋃{0} and lim

n,→∞
α(xn, Tx) ≥ d(x, Tx),

(iv) there exists x0 ∈ X such that α(x0, Tx0) ≥ d(x0, Tx0),

(v) there exists ψ ∈ Ψ such that for all x, y ∈ X,

α(Tx, Ty) ≤ ψ(α(x, y)).

Then T has a fixed point.

We observed that the authors inherently used the continuity of ψ when using

(iii) and (v).

In this chapter we generalize the N.Hussain et al.[69] Theorem 6.4 and

obtain a new common couled fixed point theroem.

Now we give our main Theorem.
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Theorem 6.5. Let (X, d) be a metric space, F : X × X → X and

g : X → X be mapping. Let α : X ×X → R+ be a mapping with

α(x, y) = 0⇔ x = y. Assume

(6.5.1) F (X ×X) ⊆ g(X), g(X) is a complete sub space of X,

(6.5.2) the pair (F, g) is commuting,

(6.5.3) the pair (F, g) is α-admissible with respect to d,

(6.5.4) α(gx0, F (x0, x0)) ≥ d(gx0, F (x0, x0)) for some x ∈ X.

(6.5.5)

α(F (x, y), F (u, v) ≤ φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

α(gx, gu), α(gy, gv), α(gx, F (x, y)),

α(gy, F (y, x)), α(F (x, y), gu), α(F (y, x), gv)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

for all x, y ∈ X,φ ∈ Φ.

(6.5.6) (a) Assume F and g are continuous on X.

(or)

(6.5.6) (b) If {yn} is a sequence in X such that α(yn, yn+1) ≥ d(yn, yn+1) for n ∈
N ∪ {0} and yn → gy as n→∞ for some y ∈ X then lim

n→∞
α(yn, gy) = 0

and lim
n,→∞

α(yn, F (y, y)) ≥ d(gy, F (y, y)).

Then F and g have a unique common coupled fixed point.

Proof: From (6.5.4), ther exists x0 ∈ X such that

α(gx0, F (x0, x0)) ≥ d(gx0, F (x0, x0)). (1)
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From (6.5.1), there exists a sequence {xn} in X such that

gxn+1 = F (xn, xn), n = 0, 1, 2, 3, .....

From (1) α(gx0, gx1) ≥ d(gx0, gx1).

From (6.5.3), α(F (x0, x0), F (x1, x1)) ≥ d(F (x0, x0), F (x1, x1))

⇒ α(gx1, gx2) ≥ d(gx1, gx2).

Again from (6.5.3), α(F (x1, x1), F (x2, x2)) ≥ d(F (x1, x1), F (x2, x2))

⇒ α(gx2, gx3) ≥ d(gx2, gx3).

Continuing in this way, we have

α(gxn, gxn+1) ≥ d(gxn, gxn+1) for n = 0, 1, 2, 3, .... (2)

Case(i): Suppose gxn = gxn+1 for some n.

Then gxn = F (xn, xn)⇒ gz = F (z, z) where z = xn.

Since the pair (F, g) is commuting, we have

g2z = ggz = g(F (z, z)) = F (gz, gz).

From (6.5.5), we have

α(gz, g2z) = α(F (z, z), F (gz, gz)

≤ φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

α(gz, g2z), α(gz, g2z), α(gz, F (z, z)), α(gz, F (z, z)),

α(F (z, z), g2z), α(F (z, z), g2z)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

= φ(α(gz, g2z))

which in turn yields that α(gz, g2z) = 0 since φ(t) < t for t > 0.

Thus gz = g2z. Therfore gz = g2z = F (gz, gz).

Thus (gz, gz) is a common coupled fixed point of F and g.

Suppose (p, p) is a another common coupled fixed point of F and g.

i.e; p = gp = F (p, p).
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From (6.5.5), we have

α(gz, p) = α(F (gz, gz), F (p, p)

≤ φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

α(g2z, p), α(g2z, p), α(g2z, F (gz, gz)), α(g2z, F (gz, gz)),

α(F (gz, gz), gp), α(F (gz, gz), gp),

⎫⎪⎬
⎪⎭
⎞
⎟⎠

= φ(α(gz, p))

which in turn yields that α(gz, p) = 0 so that gz = p.

Thus (gz, gz) is the unique common coupled fixed point of F and g.

Case(ii):Assume that gxn �= gxn+1 for all n = 0, 1, 2, ....

From (6.5.5), we have

α(gxn, gxn+1) = α(F (xn−1, xn−1), F (xn, xn))

≤ φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

α(gxn−1, gxn), α(gxn−1, gxn), α(gxn−1, gxn),

α(gxn−1, gxn), α(gxn, gxn), α(gxn, gxn),

⎫⎪⎬
⎪⎭
⎞
⎟⎠

= φ(α(gxn−1, gxn)).

From(2),

d(gxn, gxn+1) ≤ α(gxn, gxn+1)

≤ φ(α(gxn−1, gxn))

continuing in this way and using the non-decreasing property of φ, we have

d(gxn, gxn+1) ≤ φn(α(gx0, gx1)) (3)

→ 0 as n → ∞
Since

∞∑
n=1

φn(t) <∞ for t > 0, for each ε > 0 there exists a positive integer N

such that
∑

n≥N

φn((α(gx0, gx1)) < ε.

Let m and n be positive integers such that m > n ≥ N . Then

d(gxn, gxm) ≤
m−1∑
k=n

d(gxk, gxk+1) ≤
∑

n≥N

φn((α(gx0, gx1)) < ε.
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Thus {gxn} is Cauchy. Since g(X) is complete, there exists z ∈ X such that

gxn → gz as n→∞.
Suppose (6.5.6)(a) holds.

Then g2z = lim
n→∞

ggxn+1 = lim
n→∞

g(F (xn, xn)) = lim
n→∞

F (gxn, gxn) = F (z, z).

Write q = gz. Then gq = F (q, q).

Now as in Case(i), it follows that (gq, gq) is the unique common coupled fixed

point of F and g.

Suppose (6.5.6)(b) holds.

Then from (6.5.6)(b), we have

lim
n→∞

α(gxn, gz) = 0. (4)

Also

d(gz, F (z, z)) ≤ lim
n→∞

α(gxn, F (z, z))

= lim
n→∞

α(F (xn−1, xn−1), F (z, z))

≤ lim
n→∞

φ

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

α(gxn−1, gz), α(gxn−1, gz), α(gxn−1, gxn),

α(gxn−1, gxn), α(gxn, gz), α(gxn, gz)

⎫⎪⎬
⎪⎭
⎞
⎟⎠

= φ(0) from(4) and continuity of φ

which in turn yields that d(gz, F (z, z)) = 0 so that

F (z, z) = gz. (5)

Now as in Case(i) it follows that (gz, gz) is the unique common coupled fixed

point of F and g.

Corollary 6.6. Let (X, d) be a metric space, g : X → X and

F : X × X → X be mappings. Let α : R+ → R+ be a mapping with

α(x, y) = 0 ⇒ x = y. Assume (6.5.1),(6.5.2),(6.5.3),(6.5.4) and (6.4.6). Also

assume
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(6.6.1) α(F (x, y), F (u, v)) ≤ φ(max{α(gx, gu), α(gy, gv)})
for all x, y, u, v ∈ X and φ ∈ Φ.

Then F and g have a unique common coupled fixed point .

Corollary 6.7. Let (X, d) be a complete metric space and F : X×X → X

be a mapping. Let α : R+ → R+ be a mapping. Assume that

(6.7.1) α(F (x, y), F (u, v)) ≤ φ(max{α(x, u), α(y, v)}) for all x, y, u, v ∈ X and

φ ∈ Φ,

(6.7.2) F is α-admissible mapping with respect to d,

(6.7.3) there exists x0 ∈ X such that α(x0, F (x0, x0) ≥ d(x0, F (x0, x0),

(6.7.4) if {xn} is a sequence in X such that α(xn, xn+1) ≥ d(xn, xn+1) for all

n = 1, 2, 3... and xn → x as n → ∞, then lim
n→∞

α(xn, x) = 0 and

lim
n→∞

α(xn, F (x, x)) ≥ d(x, F (x, x)).

or

F is continuous on X ×X.

Then F has a coupled fixed point.

In 2016 Hussain et al.[69] proved the following theorem.

Theorem 6.8(Hussain et al.[69]): Let α : X × X → R+ be a mapping

(X, d) be a metric space and T : X → X be mapping and the following

assertions hold:

(6.8.1) T is triangular α-admissible mapping with respect to d(x, y),

(6.8.2) either T is continuous or,
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(6.8.3) if {xn} is asequence in X such that α(xn, xn+1) ≥ d(xn, xn+1) for all

n ∈ N ∪ {0} and xn → x as n→∞, then lim
n→∞

α(xn, Tx) ≥ d(x, Tx),

(6.8.4) there exists x0 ∈ X such that α(x0, Tx0) ≥ d(x0, Tx0),

(6.8.5) assume that there exists a function β : R+ → [0, 1] such that for any

bounded sequence {tn} of posiytive reals ,β(tn)→ 1 implies tn → 0 and

for all x, y ∈ X, α(Tx, Ty) ≤ β(α(x, y))d(x, y).

Then T has a fixed point.

Definition 6.9. Let (X, d) be a metric space, α : X × X → R+ be a

mapping and f, g, S, T : X → X. The pair (f, g) is α-admissible with respect to

the pair (S, T ) under d if for x, y ∈ X, α(Sx, Ty) ≥ d(Sx, Ty)⇒ α(fx, gy) ≥
d(fx, gy) and α(Tx, Sy) ≥ d(Tx, Sy)⇒ α(gx, fy) ≥ d(gx, fy).

Definition 6.10. (f, g) is called triangular α-admissible w.r.to the pair

(S, T ) if

(i) (f, g) is α-admissible w.r.to (S, T ) and

(ii) α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Now we generalize the Hussain et al.[72] Theorem 6.7 for four maps as

follows.

Theorem 6.11. Let α : X ×X → R+ be a mapping with

α(x, y) = 0 ⇒ x = y. Let (X, d) be a metric space and f, g, S, T : X → X be

mappings satisfying

(6.11.1) f(X) ⊆ T (X), g(X) ⊆ S(X),

(6.11.2) (f, S) and (g, T ) are weakly compatible pairs,
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(6.11.3) α(fx, gy) ≤ β(α(Sx, Ty))d(Sx, Ty), for all x, y ∈ X, where β : R+ →
[0, 1) such that for any bounded sequence {tn} of positive reals, β(tn)→ 1

implies tn → 0 as n→∞,

(6.11.4) there exists x1 ∈ X such that α(Sx1, fx1) ≥ d(Sx1, fx1) and

α(fx1, Sx1) ≥ d(fx1, Sx1),

(6.11.5) the pair (f, g) is triangular α-admissible with respect to the pair (S, T )

under d,

(6.11.6) suppose S(X) is a complete sub space of X and

lim
n→∞

α(fu, yn) ≥ d(fu, Su), lim
n→∞

α(Sz, yn) ≥ d(Sz, z) and

α(z, Tz) ≥ d(z, Tz) whenever there exists a sequence {yn} in X such

that α(yn, yn+1) ≥ d(yn, yn+1) for n = 1, 2, ... and yn → z = Su for some

z, u ∈ X.

Then f, g, S and T have a common fixed point.

Proof: From (6.11.4), there exists x1 ∈ X such that

α(Sx1, fx1) ≥ d(Sx1, fx1) (1)

and α(fx1, Sx1) ≥ d(fx1, Sx1) (2).

From (6.11.1), there exist sequences {xn} and {yn} as follows:

y2n+1 = fx2n+1 = Tx2n+2,

y2n+2 = gx2n+2 = Sx2n+3, n = 0, 1, 2, ....

From(1),

α(Sx1, fx1) ≥ d(Sx1, fx1)

⇒ α(Sx1, Tx2) ≥ d(Sx1, Tx2) from definition of {yn}
⇒ α(fx1, gx2) ≥ d(fx1, gx2) from (6.11.5), i.e; α(y1, y2) ≥ d(y1, y2)

⇒ α(Tx2, Sx3) ≥ d(Tx2, Sx3) from definition of {yn}
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⇒ α(gx2, fx3) ≥ d(gx2, fx3) from (6.11.5), i.e; α(y2, y3) ≥ d(y2, y3)

Continuing in this way, we have

α(yn, yn+1) ≥ d(yn, yn+1) for n = 1, 2, .... (3)

Similarly using (2), we can show that

α(yn+1, yn) ≥ d(yn+1, yn) for n = 1, 2, .... (4)

By (3),(4) and using triangular property, we have

α(ym, yn) ≥ d(ym, yn) for m < n (5)

and α(yn, ym) ≥ d(yn, ym) for m < n. (6)

Case(i): Suppose y2m = y2m+1 for some m.

Now from (3),

d(y2m+1, y2m+2) ≤ α(y2m+1, y2m+2)

= α(fx2m+1, gx2m+2)

≤ β(α(Sx2m+1, Tx2m+2))d(Sx2m+1, Tx2m+2)

= β(α(y2m+1, y2m+2))(0)

= 0

which in turn yields that y2m+1 = y2m+2.

Continuing in this way, we can show that y2m = y2m+1 = y2m+2 = ..........

Hence {yn} is a costant Cauchy sequence.

Case(ii): Suppose yn �= yn+1 for all n.

As in case(i), d(y2n+1, y2n+2) ≤ β(α(y2n, y2n+1))d(y2n, y2n+1) (7)

Since β(t) < 1 and yn �= yn+1 for all n, it follows that

d(y2n+1, y2n+2) < d(y2n, y2n+1). (8)
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Consider

d(y2n, y2n+1) = d(y2n+1, y2n)

≤ α(y2n+1, y2n) from(4)

= α(fx2n+1, gx2n)

≤ β(α(Sx2n+1, Tx2n))d(Sx2n+1, Tx2n)

= β(α(y2n, y2n−1))d(y2n, y2n−1)

< d(y2n, y2n−1). (9)

From (8) and (9), it follows that {d(yn, yn+1)} is a decreasing sequence of non-

negative real numbers and hence converges to some real number r ≥ 0 such

that lim
n→∞

d(yn, yn+1) = r.

From (7), we have d(y2n+1,y2n+2)
d(y2n,y2n+1)

≤ β(α(y2n, y2n+1)).

Letting n→∞, we get 1 ≤ lim
n→∞

β(α(y2n, y2n+1)) ≤ 1.

Hence lim
n→∞

α(y2n, y2n+1) = 0.

But from (3), we have

0 ≤ lim
n→∞

d(y2n, y2n+1) ≤ lim
n→∞

α(y2n, y2n+1) = 0.

Thus lim
n→∞

d(y2n, y2n+1) = 0 and hence lim
n→∞

d(yn, yn+1) = 0. (10)

Now we prove that {yn} is a Cauchy sequence. In view of (10), it sufficient to

show that {y2n} is Cauchy.

Assume on the contray that {y2n} is not a Cauchy sequence. Then there exists

ε > 0 for which we can find two sequences {y2mk
} and {y2nk} of {y2n} so that

nk is the smallest positive integer such that 2nk > 2mk > k with

d(y2mk
, y2nk) ≥ ε. (11)

and d(y2mk
, y2nk−2) < ε. (12)
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From(11) and (12), we have

ε ≤ d(y2mk
, y2nk) ≤ d(y2mk

, y2nk−2) + d(y2nk−2, y2nk−1) + d(y2nk−1, y2nk)

< ε+ d(y2nk−2, y2nk−1) + d(y2nk−1, y2nk)

letting k →∞ and using (10), we get ε ≤ lim
k→∞

d(y2mk
, y2nk) ≤ ε so that

lim
k→∞

d(y2mk
, y2nk) = ε (13)

letting k →∞ and using (10) and (13) in

|d(y2mk+1, y2nk)− d(y2mk
, y2nk)| ≤ d(y2mk

, y2mk+1) we have

lim
k→∞

d(y2mk+1, y2nk) = ε (14)

letting k →∞ and using (10) and (11) in

|d(y2mk
, y2nk−1)− d(y2mk

, y2nk)| ≤ d(y2nk−1, y2nk),

we get

lim
k→∞

d(y2mk
, y2nk−1) = ε. (15)

From (5), we have

d(y2mk+1, y2nk) ≤ α(y2mk+1, y2nk)

= α(fx2mk+1, gx2nk)

≤ β(α(y2mk
, y2nk−1))d(y2mk

, y2nk−1) (16)

letting k →∞ in (16), we get

ε ≤ lim
k→∞

β(α(y2mk
, y2nk−1))ε from (14),(15)

1 ≤ lim
k→∞

β(α(y2mk
, y2nk−1)).

But lim
k→∞

β(α(y2mk
, y2nk−1)) ≤ 1.

Thus lim
k→∞

β(α(y2mk
, y2nk−1)) = 0. Hence lim

k→∞
α(y2mk

, y2nk−1) = 0.

From (5) and (6) we have
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lim
k→∞

d(y2mk
, y2nk−1) = 0

ε = 0 from (15). It is a contradiction.

Hence {y2n} is a Cauchy sequence.

From (10), it follows that {y2n+1} is also a Cauchy sequence.

Thus {yn} is a Cauchy sequence.

Suppose (6.11.6) holds.

Since y2n+2 = Sx2n+3 ∈ S(X) and S(X) is a complete subspace of X, there

exist z and u ∈ X such that y2n+2 → z = Su.

Thus lim
n→∞

gx2n+2 = lim
n→∞

fx2n+1 = lim
n→∞

Tx2n+2 = z.

Now we have

d(fu, z) = d(fu, Su) ≤ lim
n→∞

α(fu, y2n+2)

= lim
n→∞

α(fu, gx2n+2)

≤ lim
n→∞

β(α(Su, Tx2n+2))d(Su, Tx2n+2)

= lim
n→∞

β(α(z, y2n+1))d(z, y2n+1) = 0

which in turn yields that Su = z = fu.

Since (f, S) is weakly compatible, we have fz = fSu = Sfu = Sz

From (6.11.6), we have

d(Sz, z) ≤ lim
n→∞

α(Sz, y2n+2). (17)

= lim
n→∞

α(fz, gx2n+2)

≤ lim
n→∞

β(α(Sz, Tx2n+2))d(Sz, Tx2n+2)

= lim
n→∞

β(α(Sz, y2n+1))d(Sz, y2n+1)

= lim
n→∞

β(α(Sz, y2n+1))d(Sz, z)

Thus 1 ≤ lim
n→∞

β(α(Sz, y2n+1)) ≤ 1

which in turn yields that lim
n→∞

α(Sz, y2n+1) = 0.
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Hence from (17), d(Sz, z) = 0 so that Sz = z.

Thus fz = Sz = z.

Since f(X) ⊆ T (X), there exist α ∈ X such that z = fz = Tα.

Now

α(z, gα) = α(Tα, gα) = α(fz, gα)

≤ β(α(Sz, Tα))d(Sz, Tα)

= β(α(z, z))d(z, z)

= 0

which in turn yields that α(z, gα) = 0

Thus gα = z = Tα

Since (g, T ) is weakly compatible, we have Tz = T (gα) = gTα = gz.

Now

α(z, Tz) = α(fz, gz)

≤ β(α(Sz, Tz))d(Sz, Tz)

= β(α(z, Tz))d(z, Tz).

Since β(t) < 1 we have α(z, Tz) = 0 so that Tz = z. Thus Tz = gz = z.

Thus z is a common fixed point of f, g, S and T .
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CHAPTER 7

UNIQUE COMMON FIXED POINT THEOREM OF INTEGRAL

TYPE FOR FOUR MAPS IN DISLOCATED QUASI b-METRIC

SPACES

In this chapter we obtain two common fixed point theorems using contrac-

tive conditions of integral type in dislocated quasi b-metric spaces. We also

furnish examples which supports our results.

In 2002, Banaciari et al.[6] generalized the Banach contraction principle by

introducing the integral contraction. Afterwards many researchers extended

the results of Banaciari and obtained fixed point and common fixe point the-

orems using various contractive conditions of integral type in different spaces

for example (refer[1, 7, 25, 37, 65, 112]).

Before proving our theorems, we state the following.

Definition 7.1. Let Γ denote the class of functions ρ : R+ → R+ which

are Lebesgue summable on each compact subset of R+, non-negative and∫ s

0
ρ(t) dt > 0 for any s > 0. We observe the following

(i) lim
n→∞

∫ an
0
ρ(t) dt =

∫ lim
n→∞ an

0 ρ(t) dt for any non-negative real sequence

{an}.

(ii) max{∫ a

0
ρ(t) dt,

∫ b

0
ρ(t) dt} =

∫ max{a,b}
0

ρ(t) dt for any non-negative real

numbers a and b.

(iii)
∫ a

0
ρ(t) dt ≤ h

∫ a

0
ρ(t) dt for any non-negative real number a and 0 ≤

h < 1 implies a = 0.
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Definition 7.2(M.U.Ali et al.[65]): ρ ∈ Γ is an integral sub additive if for

each a, b > 0 one has
∫ a+b

0
ρ(t)dt ≤ ∫ a

0
ρ(t)dt+

∫ b

0
ρ(t)dt.

In the year 2018 M U Rahman et al.[67] proved the following theorem.

Theorem 7.3.(M U Rahman et al.[67]): Let (X, d) be a complete dislo-

cated quasi b-metric space, for a, b, c, e, f ≥ 0 with a+b
1−(c+e+f)

< 1
k
, where k ≥ 1

and let T : X → X be a continuous self-mapping such that for all x, y ∈ X

satisfying the condition

d(Tx,Ty)∫
0

ρ(t)dt ≤ a
d(x,y)∫
0

ρ(t)dt+ b
d(x,Tx)∫
0

ρ(t)dt+c
d(y,Ty)∫
0

ρ(t)dt+

e

d(y,Ty)(1+d(x,Tx))
1+d(x,y)∫
0

ρ(t)dt+ f

d(x,Ty)d(y,Ty)
k[d(x,y)+d(y,Ty)]∫

0

ρ(t)dt

where ρ : R+ → R+ is a Lebesque integrable mapping which is summable on

each compact subset of R+, non-negative and such that for any

s > 0,
s∫
0

ρ(t)dt > 0. Then T has a unique fixed point.

In proving Theorem 7.3 the authors [67] inherently used integral sub addi-

tive definition of [65] (namely,Definition 7.2)

Now we prove two unique common fixed point theorems for four maps using

integral type conditions in dislocated quasi b-metric spaces.

Theorem 7.4. Let (X, d) be a complete dislocated quasi b- metric space

with fixed integer k ≥ 1, 0 ≤ h < 1 with hk < 1 and F,G, S, T : X → X be

continuous mapping satisfying

(7.4.1)
∫ d(Fx,Gy)

0
ρ(t)dt ≤ h

∫M1(x,y)

0
ρ(t)dt, for all x, y ∈ X and ρ ∈ Γ where

M1(x, y) = max

⎧⎪⎨
⎪⎩

d(Sx, Ty), 1
2k
d(Sx, Fx), 1

2k
d(Ty,Gy)

1
2k
d(Sx,Gy), 1

2k
d(Ty, Fx)

⎫⎪⎬
⎪⎭
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(7.4.2)
∫ d(Gx,Fy)

0
ρ(t)dt ≤ h

∫M2(x,y)

0
ρ(t)dt, for all x, y ∈ X and ρ ∈ Γ where

M2(x, y) = max

⎧⎪⎨
⎪⎩

d(Tx, Sy), 1
2k
d(Tx,Gx), 1

2k
d(Sy, Fy)

1
2k
d(Tx, Fy), 1

2k
d(Sy,Gx)

⎫⎪⎬
⎪⎭

(7.4.3) F (X) ⊆ T (X) and G(X) ⊆ S(X) ,

(7.4.4) FS = SF and GT = TG.

Then F,G, S and T have a unique common fixed point in X.

Proof: Let x0 ∈ X.

From (7.4.3), there exist sequences {xn} and {yn} in X such that

y2n = Fx2n = Tx2n+1,

y2n+1 = Gx2n+1 = Sx2n+2, n = 0, 1, 2, ....

Case(i): Suppose max{d(yn−1, yn), d(yn, yn−1)} = 0 for some n.

With out loss of generality assume that n = 2m. Then y2m−1 = y2m.

Consider from (7.4.1),

d(y2m,y2m+1)∫
0

ρ(t)dt =
d(Fx2m,Gx2m+1)∫

0

ρ(t)dt

≤ h
d(x2m,x2m+1)∫

0

ρ(t)dt

From Note 1.12.6 (Ch-1) and Case(i), we have

M1(x2m, x2m+1) = max

⎧⎪⎨
⎪⎩

d(y2m−1, y2m), 1
2k
d(y2m−1, y2m), 1

2k
d(y2m, y2m+1),

1
2k
d(y2m−1, y2m+1), 12kd(y2m, y2m),

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(y2m−1, y2m), d(y2m−1, y2m), d(y2m, y2m+1),

max {d(y2m−1, y2m), d(y2m, y2m+1)} ,
max {d(y2m, y2m+1), d(y2m+1, y2m)}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= max {d(y2m, y2m+1), d(y2m+1, y2m)} .

Thus we have
d(y2m,y2m+1)∫

0

ρ(t)dt ≤ h
max{d(y2m,y2m+1),d(y2m+1,y2m)}∫

0

ρ(t)dt
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From (7.4.2), we have

d(y2m+1,y2m)∫
0

ρ(t)dt =
d(Gx2m+1,Fx2m)∫

0

ρ(t)dt

≤ h
M2(x2m+1,x2m)∫

0

ρ(t)dt

From Note 1.12.6 (Ch-1) and Case(i), we have

M2(x2m+1, x2m) = max

⎧⎪⎨
⎪⎩

d(y2m, y2m−1), 12kd(y2m, y2m+1),
1
2k
d(y2m−1, y2m),

1
2k
d(y2m, y2m), 1

2k
d(y2m−1, y2m+1)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(y2m, y2m−1), d(y2m, y2m+1), d(y2m−1, y2m),

max {d(y2m, y2m+1), d(y2m+1, y2m)} ,
max {d(y2m−1, y2m), d(y2m, y2m+1)}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= max {d(y2m, y2m+1), d(y2m+1, y2m)} .
Thus
d(y2m+1,y2m)∫

0

ρ(t)dt ≤ h
max{d(y2m,y2m+1),d(y2m+1,y2m)}∫

0

ρ(t)dt.

Hence we have
max{d(y2m,y2m+1),d(y2m+1,y2m)}∫

0

ρ(t)dt ≤ h
max{d(y2m,y2m+1),d(y2m+1,y2m)}∫

0

ρ(t)dt

which in turn yields that max{d(y2m, y2m+1), d(y2m, y2m+1)} = 0

so that, y2m = y2m+1.

Continuing in this way, we can show that y2m−1 = y2m = y2m+1 = ....

Thus {yn} is a constant Cauchy sequence in X.

Case(ii): Suppose that max{d(y2n, y2n+1), d(y2n+1, y2n)} > 0 for all n.

As in Case(i), we have

max{d(y2n,y2n+1),d(y2n+1,y2n)}∫
0

ρ(t)dt ≤ h

max

�
d(y2n−1,y2n),d(y2n,y2n−1),
d(y2n,y2n+1),d(y2n+1,y2n)

�
∫
0

ρ(t)dt (1)

If max{d(y2n−1, y2n), d(y2n, y2n−1)} ≤ max{d(y2n, y2n+1), d(y2n+1, y2n)}
then from (1), we have
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max{d(y2n,y2n+1),d(y2n+1,y2n)}∫
0

ρ(t)dt ≤ h

max{d(y2n,y2n+1),d(y2n+1,y2n)}∫
0

ρ(t)dt

which in turn yields that max{d(y2n, y2n+1), d(y2n+1, y2n)} = 0.

It is a contradiction to the Case(ii).

Hence from (1), we have

max{d(y2n,y2n+1),d(y2n+1,y2n)}∫
0

ρ(t)dt ≤ h

max{d(y2n−1,y2n),d(y2n,y2n−1)}∫
0

ρ(t)dt.

max{d(yn,yn+1),d(yn+1,yn)}∫
0

ρ(t)dt ≤ h
max{d(yn−1,yn),d(yn,yn−1)}∫

0

ρ(t)dt

...

...

≤ hn
max{d(y0,y1),d(y1,y0)}∫

0

ρ(t)dt (2)

Now for all positive integers n, p and using(2), we have

d(yn, yn+p) ≤ kd(yn, yn+1) + k2d(yn+1, yn+2) + ....+ kpd(yn+p−1, yn+p)
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Since ρ is integral sub additive, we have

d(yn,yn+p)∫
0

ρ(t)dt

≤
kd(yn,yn+1)+k2d(yn+1,yn+2)+...+kpd(yn+p−1,yn+p)∫

0

ρ(t)dt

=
kd(yn,yn+1)∫

0

ρ(t)dt+
k2d(yn+1,yn+2)∫

0

ρ(t)dt+ ......+
kpd(yn+p−1,yn+p)∫

0

ρ(t)dt

≤ k
d(yn,yn+1)∫

0

ρ(t)dt+ k2
d(yn+1,yn+2)∫

0

ρ(t)dt+ ......+ kp
d(yn+p−1,yn+p)∫

0

ρ(t)dt

≤ khn
max{d(y0,y1),d(y1,y0)}∫

0

ρ(t)dt+ k2hn+1
max{d(y0,y1),d(y1,y0)}∫

0

ρ(t)dt+ ......

+kphn+p−1
max{d(y0,y1),d(y1,y0)}∫

0

ρ(t)dt

≤ khn

1−kh

max{d(y0,y1),d(y1,y0)}∫
0

ρ(t)dt since hk < 1

→ 0 as n→∞, since 0 ≤ h < 1.

Thus lim
n→∞

d(yn, yn+p) = 0.

Similarly we can show that lim
n→∞

d(yn+p, yn) = 0.

Thus {yn} is a Cauchy sequence in X.

Since X is complete dislocated quasi b-metric space, there exists z ∈ X such

that {yn} converges to z. Since S and F are continuous and SF = FS we

have Sz = lim
n→∞

Sy2n = lim
n→∞

SFx2n = lim
n→∞

FSx2n = lim
n→∞

Fy2n−1 = Fz.

Similarly, since T and G are continuous and TG = GT we have Tz = Gz.

From (7.4.1), we have
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d(Sz,Tz)∫
0

ρ(t)dt =
d(Fz,Gz)∫
0

ρ(t)dt ≤
M1(z,z)∫
0

ρ(t)dt

M1(z, z) = max

⎧⎪⎨
⎪⎩

d(Sz, Tz), 1
2k
d(Sz, Fz), 1

2k
d(Tz,Gz),

1
2k
d(Sz,Gz), 1

2k
d(Tz, Fz)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

d(Sz, Tz),max {d(Sz, Tz), d(Tz, Sz)} ,
max {d(Tz, Sz), d(Sz, Tz)} , d(Sz, Tz), d(Tz, Sz)

⎫⎪⎬
⎪⎭

= max {d(Sz, Tz), d(Tz, Sz)} .

Thus
d(Sz,Tz)∫
0

ρ(t)dt ≤ h
max{d(Sz,Tz),d(Tz,Sz)}∫

0

ρ(t)dt.

Similarly using (7.4.2), we can show that
d(Tz,Sz)∫
0

ρ(t)dt ≤ h
max{d(Sz,Tz),d(Tz,Sz)}∫

0

ρ(t)dt.

Thus we have
max{d(Sz,Tz),d(Tz,Sz)}∫

0

ρ(t)dt ≤ h
max{d(Sz,Tz),d(Tz,Sz)}∫

0

ρ(t)dt

which in turn yields that max{d(Sz, Tz), d(Tz, Sz)} = 0.

Hence Sz = Tz.

Let u = Sz = Tz.

Then Su = S(Sz) = S(Fz) = F (Sz) = Fu and

Tu = T (Tz) = T (Gz) = G(Tz) = Gu.

From (7.4.1), we have

d(Su,u)∫
0

ρ(t)dt =
d(Fu,Gz)∫

0

ρ(t)dt

≤ h
M1(u,z)∫
0

ρ(t)dt

141



M1(u, z) = max

⎧⎪⎨
⎪⎩

d(Su, Tz), 1
2k
d(Su, Fu), 1

2k
d(Tz,Gz),

1
2k
d(Su,Gz), 1

2k
d(Tz, Fu)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

d(Su, u),max {d(Su, u), d(u, Su)} ,
max {d(u, Su), d(Su, u)} , d(Su, u), d(u, Su)

⎫⎪⎬
⎪⎭

= max {d(Su, u), d(u, Su)} .

Thus
d(Su,u)∫
0

ρ(t)dt ≤ h
max{d(Su,u),d(u,Su)}∫

0

ρ(t)dt.

Similarly, using (7.4.2), we can show that
d(u,Su)∫
0

ρ(t)dt ≤ h
max{d(Su,u),d(u,Su)}∫

0

ρ(t)dt.

Thus we have
max{d(Su,u),d(u,Su)}∫

0

ρ(t)dt ≤ h
max{d(Su,u),d(u,Su)}∫

0

ρ(t)dt

which in turn yields that max{d(Su, u), d(u, Su)} = 0.

Hence Su = u.

Thus Su = u = Fu.

Similarly we can show that Tu = u = Gu.

Thus u is a common fixed point of F,G, S and T .

Let u∗ be another common fixed point of F,G, S and T .

Then Fu∗ = Su∗ = u∗ = Tu∗ = Gu∗.

Consider from (7.4.1), we have

d(u,u∗)∫
0

ρ(t)dt =
d(Fu,Gu∗)∫

0

ρ(t)dt

≤ h
M1(u,u∗)∫

0

ρ(t)dt
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M1(u, u
∗) = max

⎧⎪⎨
⎪⎩

d(Su, Tu∗), 1
2k
d(Su, Fu), 1

2k
d(Tu∗, Gu∗),

1
2k
d(Su,Gu∗), 1

2k
d(Tu∗, Fu)

⎫⎪⎬
⎪⎭

≤ max

⎧⎪⎨
⎪⎩

d(u, u∗),max {d(u, u∗), d(u∗, u)} ,
max {d(u∗, u), d(u, u∗)} , d(u, u∗), d(u∗, u)

⎫⎪⎬
⎪⎭

= max {d(u, u∗), d(u∗, u)} .

Thus
d(u,u∗)∫
0

ρ(t)dt ≤ h
max{d(u,u∗),d(u∗,u)}∫

0

ρ(t)dt.

Similarly using (7.4.2), we can show that
d(u∗,u)∫
0

ρ(t)dt ≤ h
max{d(u,u∗),d(u∗,u)}∫

0

ρ(t)dt.

Thus we have
max{d(u,u∗),d(u∗,u)}∫

0

ρ(t)dt ≤ h
max{d(u,u∗),d(u∗,u)}∫

0

ρ(t)dt

which in turn yields that max{d(u, u∗), d(u∗, u)} = 0

Hence u = u∗.

Thus u is unique common fixed point of F,G, S and T .

Now we give an example to illustrate our Theorem 7.4

Example 7.5. Let X = [0, 1] and d(x, y) = |2x− y|2 + |2x+ y|2.
Let F,G, S, T : X → X be defined by Fx = x

16
, Gx = x

24
,

Sx = x
4

and Tx = x
6
.

Let ρ : R+ → R+ be defined by ρ(t) = 1.

Clearly d(x, y) = d(y, x) = 0 implies that x = y.

Consider
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d(x, y) = |2x− y|2 + |2x+ y|2

d(x, y) = |2x− y|2 + |2x+ y|2

= |2x− z + z − y|2 + |2x+ z − z + y|2

≤ 2
[|2x− z|2 + |z − y|2 + |2x+ z|2 + |−z + y|2]

≤ 2
[|2x− z|2 + |2z − y|2 + |2x+ z|2 + |2z + y|2]

= 2
[|2x− z|2 + |2x+ z|2 + |2z − y|2 + |2z + y|2]

= k [d(x, z) + d(z, y)] , where k = 2

Consider

d(Fx,Gy)∫
0

ρ(t)dt =
d( x

16
, y
24
)∫

0

1 dt

= [t]
d( x

16
, y
24
)

0

= d( x
16
, y
24

)

=
∣∣2x
16
− y
24

∣∣2 +
∣∣2x
16

+ y
24

∣∣2
= 1

16

[∣∣2x
4
− y

6

∣∣2 +
∣∣2x
4

+ y
6

∣∣2]
= 1

16

[∣∣2x
4
− y

6

∣∣2 +
∣∣2x
4

+ y
6

∣∣2]
= 1

16
[d(Sx, Ty)]

= 1
16

d(Sx,Ty)∫
0

1 dt

≤ h
M1(x,y)∫
0

ρ(t) dt

where M1(x, y) = max

⎧⎪⎨
⎪⎩

d(Sx, Ty), 1
2k
d(Sx, Fx), 1

2k
d(Ty,Gy),

1
2k
d(Sx,Gy), 1

2k
d(Ty, Fx)

⎫⎪⎬
⎪⎭

Thus (7.4.1) is satisfied. Similarly we can verify (7.4.2). Also it is clear that

F,G, S and T are continuous, FS = SF , GT = TG and

F (x) ⊆ T (X), G(X) ⊆ S(X). Thus all conditions of Theorem 7.4 are satisfied.

Clearly 0 is the unique common fixed point of F,G, S and T in X.
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Theorem 7.6. Let (X, d) be a dislocated quasi b-metric space with fixed

integer k ≥ 1, 0 ≤ h < 1 and F,G, S, T : X → X be mappings satisfying

(7.6.1)
∫ d(Fx,Gy)

0
ρ(t)dt ≤ h

∫M1(x,y)

0
ρ(t)dt for all x, y ∈ X , ρ ∈ Γ and ρ is

integral sub additive and

M1(x, y) = 1
2k2 max {d(Sx, Ty), d(Sx, Fx), d(Ty,Gy), d(Sx,Gy), d(Ty, Fx)}

(7.6.2)
∫ d(Gx,Fy)

0
ρ(t)dt ≤ h

∫M2(x,y)

0
ρ(t)dt for all x, y ∈ X ρ ∈ Γ and ρ is

integral sub additive and

M2(x, y) = 1
2k2 max {d(Tx, Sy), d(Tx,Gx), d(Sy, Fy), d(Tx, Fy), d(Sy,Gx)}

(7.6.3) F (X) ⊆ T (X) and G(X) ⊆ S(X) ,

(7.6.4) one of T (X) and S(X) is a complete subspace of X and

(7.6.5) the pairs (F, S) and (G, T ) are weakly compatible.

Then F,G, S and T have a unique common fixed point in X.

Proof: As in proof of Theorem 7.4, the sequence{yn} is Cauchy

where y2n = Fx2n = Tx2n+1,

y2n+1 = Gx2n+1 = Sx2n+2, n = 0, 1, 2, ....

Assume that S(X) is a complete subspace of X.

Since y2n+1 = Sx2n+2 ∈ S(X), there exists z ∈ S(X) such that y2n+1 → z.

Hence there exists u ∈ X such that z = Su.

Since {yn} is Cauchy sequence we have y2n → z.

By Lemma 1.12.5 (Ch-1) and (7.6.1) we have

1
k
d(Fu,z)∫
0

ρ(t)dt ≤
lim
n→∞ d(Fu,Gx2n+1)∫

0

ρ(t)dt

= lim
n→∞

d(Fu,Gx2n+1)∫
0

ρ(t)dt

≤ h lim
n→∞

M1(u,x2n+1)∫
0

ρ(t)dt
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lim
n→∞

M1(u, x2n+1) = lim
n→∞

1
2k2 max

⎧⎪⎨
⎪⎩

d(Su, Tx2n+1), d(Su, Fu), d(Tx2n+1, Gx2n+1),

d(Su,Gx2n+1), d(Tx2n+1, Fu)

⎫⎪⎬
⎪⎭

≤ lim
n→∞

1
2k2 max

⎧⎪⎨
⎪⎩

d(z, y2n), d(z, Fu), d(y2n, y2n+1),

d(z, y2n+1), d(y2n, Fu)

⎫⎪⎬
⎪⎭

≤ 1
2k
d(z, Fu), by Lemma(1.12.5)(Ch− 1)

≤ 1
k
d(z, Fu).

Thus
1
k
d(Fu,z)∫
0

ρ(t)dt ≤ h

1
k
d(z,Fu)∫
0

ρ(t)dt (1)

By Lemma 1.12.5 and (7.6.2), we have

1
k
d(z,Fu)∫
0

ρ(t)dt ≤
lim
n→∞ d(Gx2n+1,Fu)∫

0

ρ(t)dt

= lim
n→∞

d(Gx2n+1,Fu)∫
0

ρ(t)dt

≤ h lim
n→∞

M2(x2n+1,u)∫
0

ρ(t)dt

lim
n→∞

M1(x2n+1, Fu) = lim
n→∞

1
2k2 max

⎧⎪⎨
⎪⎩

d(Tx2n+1, Su), d(Tx2n+1, Gx2n+1), d(Su, Fu),

, d(Tx2n+1, Fu), d(Su,Gx2n+1)

⎫⎪⎬
⎪⎭

≤ lim
n→∞

1
2k2 max

⎧⎪⎨
⎪⎩

d(y2n, z), d(y2n, y2n+1), d(z, Fu),

d(y2n, Fu), d(z, y2n+1)

⎫⎪⎬
⎪⎭

≤ 1
2k
d(z, Fu), by Lemma 1.12.5 (Ch− 1)

≤ 1
k
d(z, Fu).

Thus we have
1
k
d(z,Fu)∫
0

ρ(t)dt ≤ h

1
k
d(z,Fu)∫
0

ρ(t)dt

which in turn yields that d(z, Fu) = 0

From(1), d(Fu, z) = 0. Thus z = Fu.

Hence Su = z = Fu.
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Since (F, S) is weakly compatible, we have Sz = SFu = FSu = Fz.

From Lemma 1.12.5 (Ch-1) and using (7.6.1), we have

1
k
d(Sz,z)∫
0

ρ(t)dt ≤
lim
n→∞ d(Fz,Gx2n+1)∫

0

ρ(t)dt

= lim
n→∞

d(Fz,Gx2n+1)∫
0

ρ(t)dt

≤ h lim
n→∞

M1(z,x2n+1)∫
0

ρ(t)dt

lim
n→∞

M1(z, x2n+1) = lim
n→∞

1
2k2 max

⎧⎪⎨
⎪⎩

d(Sz, Tx2n+1), d(Sz, Fz), d(Tx2n+1, Gx2n+1),

d(Sz,Gx2n+1), d(Tx2n+1, F z)

⎫⎪⎬
⎪⎭

≤ lim
n→∞

1
2k2 max

⎧⎪⎨
⎪⎩

d(Sz, y2n), d(z, Fz), d(y2n, y2n+1),

d(Sz, y2n+1), d(y2n, F z)

⎫⎪⎬
⎪⎭

≤ 1
2k

max {d(Sz, z), d(z, Sz)}
≤ 1

k
max {d(Sz, z), d(z, Sz)} .

Thus
1
k
d(Sz,z)∫
0

ρ(t)dt ≤ h

1
k
max{d(Sz,z),d(z,Sz)}∫

0

ρ(t)dt.

Similarly using (7.6.2) and Lemma 1.12.5 (Ch-1) we can show that

1
k
d(z,Sz)∫
0

ρ(t)dt ≤ h

1
k
max{d(Sz,z),d(z,Sz)}∫

0

ρ(t)dt.

Thus we have

1
k
max{d(Sz,z),d(z,Sz)}∫

0

ρ(t)dt ≤ h

1
k
max{d(Sz,z),d(z,Sz)}∫

0

ρ(t)dt

which in turn yields that Sz = z.

Thus Fz = Sz = z.

Since F (X) ⊆ T (X), there exists v ∈ X such that z = Sz = Fz = Tv
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Consider from (7.6.1), we have

d(Tv,Gv)∫
0

ρ(t)dt =
d(Fz,Gv)∫
0

ρ(t)dt

≤ h
M1(z,v)∫
0

ρ(t)dt

M1(z, v) = 1
2k2 max

⎧⎪⎨
⎪⎩

d(Sz, Tv), d(Sz, Fz), d(Tv,Gv),

d(Sz,Gv), d(Tv, Fz)

⎫⎪⎬
⎪⎭

= 1
2k2 max

⎧⎪⎨
⎪⎩

d(Tv, Tv), d(Tv, Tv), d(Tv,Gv),

d(Tv,Gv), d(Tv, Tv)

⎫⎪⎬
⎪⎭

≤ max {d(Tv,Gv), d(Gv, Tv)} .
Thus

d(Tv,Gv)∫
0

ρ(t)dt ≤
max{d(Tv,Gv),d(Gv,Tv)}∫

0

ρ(t)dt

d(Gv,Tv)∫
0

ρ(t)dt =
d(Gv,Fz)∫
0

ρ(t)dt

≤ h
M2(v,z)∫
0

ρ(t)dt

M2(v, z) = 1
2k2 max

⎧⎪⎨
⎪⎩

d(Tv, Sz), d(Tv,Gv), d(Sz, Fz),

d(Tv, Fz), d(Sz,Gv)

⎫⎪⎬
⎪⎭

= 1
2k2 max

⎧⎪⎨
⎪⎩

d(Tv, Tv), d(Tv,Gv), d(Tv, Tv),

d(Tv, Tv), d(Tv,Gv)

⎫⎪⎬
⎪⎭

≤ max {d(Tv,Gv), d(Gv, Tv)} .
Thus

d(Gv,Tv)∫
0

ρ(t)dt ≤ h

max{d(Tv,Gv),d(Gv,Tv)}∫
0

ρ(t)dt.

Hence we have

max{d(Tv,Gv),d(Gv,Tv)}∫
0

ρ(t)dt ≤ h

max{d(Tv,Gv),d(Gv,Tv)}∫
0

ρ(t)dt
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which in turn yields that Gv = Tv = z.

Since the pair (G, T ) is weakly compatible, we have Tz = TGv = GTv = Gz.

From (7.6.1), we have

d(z,Tz)∫
0

ρ(t)dt =
d(Fz,Tz)∫
0

ρ(t)dt

≤ h
M1(z,z)∫
0

ρ(t)dt

M1(z, z) = 1
2k2 max

⎧⎪⎨
⎪⎩

d(Sz, Tz), d(Sz, Fz), d(Tz,Gz),

d(Sz,Gz), d(Tz, Fz)

⎫⎪⎬
⎪⎭

= 1
2k2 max

⎧⎪⎨
⎪⎩

d(z, Tz), d(z, z), d(Tz, Tz),

d(z, Tz), d(Tz, z)

⎫⎪⎬
⎪⎭

≤ max {d(z, Tz), d(Tz, z)} .
Thus

d(z,Tz)∫
0

ρ(t)dt ≤ h

max{d(z,Tz),d(Tz,z)}∫
0

ρ(t)dt.

Similarly we can show that

d(Tz,z)∫
0

ρ(t)dt ≤ h

max{d(z,Tz),d(Tz,z)}∫
0

ρ(t)dt.

Hence we have

max{d(z,Tz),d(Tz,z)}∫
0

ρ(t)dt ≤ h

max{d(z,Tz),d(Tz,z)}∫
0

ρ(t)dt

which in turn yields that Tz = z.

Thus Gz = Tz = z.

Thus z is a common fixed point of F,G, S and T .

Uniqueness of common fixed point follows easily from (7.6.1) and (7.6.2).

Now we give an example to illustrate Theorem 7.6
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Example 7.7. Let X = [0, 1] and d(x, y) = |2x− y|2 + |2x+ y|2.
Let F,G, S, T : x → X be defined by Fx = x2

128
, Gx = x2

256
, Sx = x2

8
and

Tx = x2

16
.Let ρ : R+ → R+ be defined by ρ(t) = 1.

As in Example 7.5, d is a dislocated quasi b-metric with k = 2.

Consider

d(Fx,Gy)∫
0

ρ(t)dt =
d(Fx,Gy)∫

0

1dt

= d(Fx,Gy)

=
∣∣∣x2

64
− y2

256

∣∣∣2 +
∣∣∣x2

64
+ y2

256

∣∣∣2
= 1

162

[∣∣∣x2

4
− y2

16

∣∣∣2 +
∣∣∣x2

4
+ y2

16

∣∣∣2]

= 1
256

[|2Sx− Ty|2 + |2Sx+ Ty|2]
= 1

256
[d(Sx, Ty)]

≤ h 1
2k2 max

⎧⎪⎨
⎪⎩

d(Sx, Ty), d(Sx, Fx), d(Ty,Gy),

d(Sx,Gy), d(Ty, Fx)

⎫⎪⎬
⎪⎭

= hM1(x, y)

= h
M1(x,y)∫
0

1dt

= h
M1(x,y)∫
0

ρ(t)dt.

Thus (7.6.1) is satisfied. Similarly we can verify (7.6.2).

One can easily verify all the remaining conditions of Theorem 7.6 and

x = 0 is the unique common fixed point of F,G, S and T .
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ABSTRACT 

In this paper we obtain a common fixed point theorem for three expansive mappings and 

a unique common fixed point theorem for two Jungck type expansive mappings in G- 

metric spaces.  
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1. INTRODUCTION

Dhage
2,3,4,5 et al. introduced the

concept of  D –metric spaces as generalization 

of ordinary metric functions and went on to 

present several fixed point results for single 

and multivalued mappings. Mustafa and Sims
6 

and Naidu et al.10,11,12
 demonstrated that most

of the claims concerning the fundamental 

topological structure of  D – metric space are 

incorrect . Alternatively, Mustafa and Sims
6

introduced more appropriate notion of 

generalized metric space or  a  G – metric 

space  and obtained some topological 

properties in it . Later Zead Mustafa, Hamed 

Obiedat and Fadi  Awawdeh
7
, Mustafa, 

Shatanawi and Bataineh
8
, Mustafa and Sims

9
, 

Shatanawi
13

 and Renu Chugh, Tamanna 

Kadian, Anju Rani  and B. E. Rhoades
1 et al.

obtained some fixed point theorems for a 

single map in G- metric spaces. In this paper, 

we obtain a unique common fixed point 

theorem for six weakly compatible mappings 

in G – metric spaces. First , we present some 

known definitions and propositions in G – 

metric spaces . 

Definition 1.1[6]: Let X be a nonempty set

and let G: X × X × X → R
+
 be a function

satisfying the following properties : 

(G1) : G (x, y, z ) = 0,  if x = y = z ,  

(G2) : 0< G (x, x, y) for all x, y ∈ X with

x ≠ y,

(G3) : G (x, x, y ) ≤ G (x, y, z ) for all x, y, z

∈ X with y ≠ z,

(G4) : G (x, y, z ) =  G (x, z, y ) =  G (y, z, x ) 

=…, symmetry in all three variables,    

(G5) : G (x, y, z ) ≤ G (x, a, a ) + G (a, y, z )

for all x, y, z , a  ∈ X.

Then the function G is called a generalized 

metric or a G – metric on X and the pair (X, G)  

is called a G- metric space. 

Definition1. 2 [6] : Let (X, G) be a G- metric

space and {x n} be a sequence in X. A point x 

∈ X is said to be limit of {xn}

iff ) x,x,G(x lim mn
m  n, ∞→

= 0. In this case , the
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sequence {x n} is said to be G – convergent to 

x. 

Definition 1.3 [6] : Let (X, G) be a G- metric 

space and {x n} be a sequence in X. {x n} is 

called G- Cauchy iff  

)x, x,G(xlim mnl
m n, l, ∞→

= 0. (X, G) is 

called G –complete if every G–Cauchy 

sequence in (X, G) is G-convergent in (X, G). 

Proposition 1.4 [6] : In a G- metric space,(X, 

G), the following are equivalent. 

(1) The sequence {x n} is G- Cauchy. 

(2) For every ε > 0, there exists N ∈ΝΝΝΝ such 

that G (x n, x m, x m) < ε , for all n, m ≥
N. 

Proposition 1.5 [6] : Let (X, G) be a G- 

metric space. Then the function G (x, y, z) is 

jointly continuous in all three of  its variables. 

Proposition 1.6 [6] : Let (X, G) be a G- 

metric space. Then for any x, y, z, a ∈X, it 

follows that  

(i) if G(x, y, z) = 0 then x = y = z, 

(ii)  G(x, y, z) ≤  G(x, x, y) + G(x, x, z), 

(iii) G(x, y, y) ≤  2G(x, x, y), 

(iv) G(x, y, z) ≤ G(x, a, z) + G(a, y, z), 

(v)  G(x, y, z) ≤
3

2
[G(x, a, a) + G(y, a, a) + 

G(z, a, a)]. 

Proposition 1.7 [6] : Let (X, G) be a G- 

metric space. Then for a sequence {x n} ⊆ X 

and a point  

x ∈ X, the following are equivalent . 

(i)  {x n} is G- convergent to x, 

(ii)  G(x n, x n, x) → 0 as n →∞,  

(iii) G(x n, x, x) → 0 as n →∞, 

(iv) G(x m, x n, x) → 0 as m, n →∞. 

2. MAIN RESULTS 
Theorem 2.1: Let (X, G) be a complete G- 

metric space . If there exist a constant q > 1 

and surjective mappings A, B and C on X 

such that  G(Ax,By,Cz)  ≥ q max {G (x, y, z), 

G(x, Ax, Cz), G(y, By, Ax), G(z, Cz, By)} for 

all x,y,z ∈ X, then 

a) A or B or C has a fixed point in X, 

                     (or) 

(b) A, B and C has a unique common fixed  

     point in X. 

Proof: Let x 0 ∈ X, 

There exist x1, x2, x3 ∈ X such that x 0  = A x1, 

x 1  = B x2 , x 2  = C x3 . 

By induction, we have 

x 3n  = A x3n+1, x 3n+1  = B x3n+2, x 3n+2  = C x3n+3, 

n = 0,1,2,… 

If x3n+1 = x3n then Ax = x, where x = x 3n . 

If x3n+2 = x3n+1 then B x = x, where x = x 3n+1. 

If x3n+3 = x3n+2 then C x = x, where x = x 3n+2.  

Assume that xn    ≠   xn+1 for all n .  

Denote dn = G ( xn, xn+1, xn+2 ). 

d3n -1 = G (x3n-1, x3n, x3n+1) = G (C x3n , A x3n+1,B 

x3n+2) 

≥ q max  

⎭

⎬

⎫

⎩

⎨

⎧

+++

+++

)x,x,G(x),x,x,G(x

),x,x,G(x),x,x,G(x

13n1-3n3n3n13n23n

1-3n3n13n3n23n13n

       = q max {d 3n, d3n-1, d3n, d3n-1}. 

 Thus we have d3n-1 ≥ q d3n  so that d3n  ≤ k d3n-1

where k = 
q
1

 < 1.         …(1) 

d3n = G( x3n, x3n+1, x3n+2) = G( Ax3n+1, 

Bx3n+2,Cx3n+3) 

≥ q max  

⎭

⎬

⎫

⎩

⎨

⎧

+++++

+++++

)x,x,G(x),x,x,G(x

),x,x,G(x),x,x,G(x

13n23n33n3n13n23n

23n3n13n33n23n13n

= q max {d3n+1, d3n, d3n, d3n+1}. 

Thus we have  d3n ≥ q d3n+1 so that d3n+1   

≤ k d3n                                   …(2) 
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d3n+1 = G( x3n+1, x3n+2, x3n+3) = G (Bx3n+2, Cx3n+3, 

Ax3n+4) 

≥ q max  

⎭

⎬

⎫

⎩

⎨

⎧

++++++

++++++

)x,x,G(x),x,x,G(x

),x,x,G(x),x,x,G(x

13n23n33n33n13n23n

23n33n43n33n23n43n

= q max {d3n+2, d3n+2, d3n+1, d3n+1} 

Thus we have  d3n+1 ≥ q d3n+2 so that d3n+2  ≤ k 

d3n+1                                     …..(3)     

From (1), (2), (3) we have  dn ≤ k dn-1, n = 

1,2,3……. 

From (G3), we have  

G( xn, xn, xn+1 ) ≤ G( xn, xn+1, xn+2 )  

≤ k G( xn-1, xn, xn+1) 

                          ≤ k2
 G( xn-2, xn-1, xn) 

                             : 

                             : 

≤ k 
n
 G( x0, x1, x2 ). 

Now, using (G5) , for m > n  

G(x n, x n, x m) ≤ G(x n, x n, xn+1) + G(xn+1, xn+1, 

xn+2) + G(xn+2, xn+2, xn+3) + ... + G(xm-1, xm-1, xm)  

≤ ( k 
n
 + k

n+1
 + k

n+2
 +…..+ k

m-1
 ) G ( x0, x1, x2) 

                       ≤
k-1

n
k

G(x0 , x1, x2)  

                       → 0 as  n→ ∞, m→ ∞ . 

Hence {x n} is G – Cauchy. Since (X, G) is 

complete, there exists p ∈ X such that {xn}is 

G- convergent to p. Now 

G( Ap, x3n+1, x3n+2) = G (A p, Bx3n+2,Cx3n+3) 

≥ q max  

⎭

⎬

⎫

⎩

⎨

⎧

+++++

+++

) x, x,(xG  p),A  , x,(xG 

), xp,A  G(p, ), x, x(p,G 

13n23n33n13n23n

23n33n23n

Letting n →∞ , we get  

G(A p, p , p)  ≥ q max {0 ,G( p, Ap , p) ,G( p, 

p, Ap), 0}. 

Thus G(A p ,p , p) = 0 so that Ap = p. 

G( x3n, Bp, x3n+2) = G (Ax3n+1, Bp,Cx3n+3) 

≥ q max  

⎭

⎬

⎫

⎩

⎨

⎧

++

++++

Bp) , x,G(x), xBp, G(p,    

), x, x,G(x), xp, ,(xG 

23n33n3n

23n3n13n33n13n

Letting  n → ∞ , we get  

G( p ,Bp , p)  ≥ q max {0 ,0,G( p ,Bp , p),G   

(p,Bp , p)}. 

Thus G( p ,Bp , p) = 0 so that Bp = p. 

G( x3n, x3n+1, Cp) = G( Ax3n+1, Bx3n+2,Cp) 

≥ q max  

⎭

⎬

⎫

⎩

⎨

⎧

+++

+++

) xCp,G(p,), x, x,G(x    

Cp), , x,G(xp), , x,(xG 

13n3n13n23n

3n13n23n13n

Letting  n → ∞ , we get  

G(p, p, Cp)  ≥ q max {0 ,G( p, p, Cp) , 0 ,G( p, 

Cp, p)}. 

Thus G( p, p, Cp) = 0 so that Cp = p. 

Thus p is a common fixed point of A, B and C. 

Suppose p'  is another common fixed   point of 

A, Band C .  

G(p, p, p′ ) = G(Ap, Bp,C p′ ) 
≥ q max{G(p, p, p′ ), G(p, p, p′ )0, 

G( p' , p' ,p) } 

                  ≥ q max {G(p, p, p′ ),
2

1
 G  

(p,p, p′ )} since G( p, p, p' ) ≤ 2 G( p' , p' , p ) 

                  = q G(p, p, p′ ) . 
Hence p'  = p . 

Thus p is a unique common fixed point of A, B 

and C. 

Corollary 2.2: Let (X, G) be a complete G-

metric space. If there exist a constant q > 1 and 

surjective mapping T on X such that 

G(T x ,T y,T z) ≥ q max{G(x, y, z),G(x, T x, 

Tz),G(y, Ty, Tx),G (z, Tz, T y)} for all x, y ,z 

∈ X,  

then T has a unique fixed point in X.  

Proof: Let x0 ∈ X. 
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There exists a sequence {x n} in X such that   x 

n = T x n+1, n = 0, 1, 2… 

If  x n = x n+1 for some n then T x = x, where x 

= x n+1.  

Assume that x n ≠ x n+1 for all n.

The rest of  the proof follows as in Theorem 

2.1. 

Theorem 2.3: Let (X, G) be a G – metric

space and A, f : X  →  X be satisfying

(2.3.1) G (A x, A y, A z) ≥ q max

⎭

⎬

⎫

⎩

⎨

⎧

y) f z,A  z, (fG   x),f y,A  y, (fG 

z), f A x, x,(fG  z), f y, f  x,(fG 
, 

for all x, y, z ∈X, where q > 1,

(2.3.2) f (X) ⊆ A(X) and f (X) is a G –

complete sub space of  X and  

(2.3.3) the pair (A, f) is weakly compatible.  

Then A and f  have a unique common fixed 

point . 

Proof : Let x 0 ∈ X.

From (2.3.2), there exists x 1∈ X such that fx 0

= Ax 1 = y 1, say. 

Inductively, there exist sequences {x n} and {y

n} in X such that

fx n-1 = Ax n = y n, n = 1, 2, 3, …. 

Case ( i ): Suppose y n = yn-1 for some n.Then

fx n-1 = Ax n-1.  

Thus fp = Ap where p = x n-1. 

Since (A, p) is weakly compatible, we have f
 2
p 

= f( fp) = f(Ap) = Afp = A
 2
p. 

G(A
2
p,Ap,Ap) ≥ q max{G(fAp, fp, fp),G(fAp,

AAp, fp),G(fp, Ap, fAp),G(fp, Ap, fp)}  

= q max {G(A
2
p,Ap,Ap), G(A

2
p,A

 2
p,Ap), 

G(Ap,Ap,A
 2
p), 0} 

≥ q G(A
 2

p, Ap, Ap), since G(A
2
p,Ap,Ap) ≤ 2

G(Ap, A 
2
p, A 

2
p)

Hence A
 2
p = Ap. Then fAp = A

 2
p = Ap.

Ap is a common fixed point of f and A.

Case (ii) : Assumethat y n ≠ yn+1 for all n

G(yn-1, y n-1, y n) = G(Axn-1, Ax n-1, Ax n) 

≥ q max

⎭

⎬

⎫

⎩

⎨

⎧

+

++

)y ,y ,G(y ),y ,y ,G(y

 ),y ,y ,G(y ),y ,y ,G(y

nn1nn1-nn

1n1-nn1nnn

≥ q max

⎪
⎭

⎪

⎬

⎫

⎪
⎩

⎪

⎨

⎧

+

+

)y ,y ,G(y ),y ,y ,G(y
2

1

 ),y ,y ,G(y ),y ,y ,G(y

1nnnn1-n1-n

n1-n1-n1nnn

, 

since G(yn-1, y n-1, y n) ≤ G(yn-1, y n, y n+1)  

and G(yn-1, y n-1, y n) ≤ 2 G(yn-1, y n, y n). 

Thus G(yn-1, y n-1, y n) ≥ q G(yn, y n, y n+1).

Hence G(yn, y n, y n+1) ≤ k G(yn-1, y n-1, y n), 

where k = 
q

1
< 1 

≤ k
 2
 G(yn-2, y n-2, y n-1)

≤ k
 3
 G(yn-3, y n-3, y n-2)

: 

: 

≤ k
 n
 G(y 0  , y 0, y 1).

Now, using (G5), for m < n we have  

G(yn, y n, y m) ≤ G(yn, y n, y n+1)+ G(yn+1, y n+1, y

n+2) + …… + G(ym-1, y m-1, y m) 

≤ (k
 n  

+ k
 n +1

 + … + k
 m-1

) G(y 0  , y 0, y 1)

≤

k-1

n
k

 G(y 0  , y 0, y 1) 

→ 0 as n→∞ , m→∞.

Hence {y n} is G-Cauchy.

Since f(X) is G- complete, there exists p, t ∈X

such that y n→ p = f t.

G(At,yn, ym) = G(At, Ax n, A x n)

≥ q max{G(p, yn+1, yn+1),G(p, At,

y n+1), G(yn+1, y n, p),G(yn+1, y n, y n)} 

Letting n →∞, we get

G(A t, p, p) ≥ q G(p, A t, p)

Thus A t = p. Hence f t = A t. 

As in case (i), f t (= A t = p) is the unique 

common fixed point of  f  and  A . 

Uniqueness: Suppose p'  is another common

fixed point of A and f. 
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G(p, p, p′ ) =  G(Ap, Ap, A p′ ) 
                   ≥ q max {G(p, p, p′ ), G(p, p, p′ ), 
0, G( p′ , p′ , p)}                                            

                   ≥ q max {G(p, p,p′ ),
2

1
 G(p, p,p′ )}                                                                                                                    

                  = q G(p, p, p′ ).  
Hence p'  = p. 
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Abstract. In this paper using f is S-Weakly commuting we prove a coincidence point
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1. Introduction

It is a well-known fact that the mathematical results regarding fixed points of con-
traction type mappings are very useful for determining the existence and uniqueness
of solutions to various mathematical models.Over the last 40 years,the theory of fixed
points has been developed regarding the results that are related to finding the fixed
points of self and nonself nonlinear mappings in a metric space.
The study of fixed points for multi-valued contraction mappings was initiated by

Nadler[18] and Markin[8].Several authors proved fixed point results in different types
of generalized metric spaces[1, 3, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19].
Azam et al.[1] introduced the concept of a complex valued metric space and obtained

sufficient conditions for the existence of common fixed points of a pair of mappings sat-
isfying a contractive type condition.Subsequently,Rouzkard and Imdad [6] established
some common fixed point theorems for maps satisfying certain rational expressions in
complex valued metric spaces to generalize the results of [1].In the same way, Sintu-
navarat et al. [21, 22] obtained common fixed point results by replacing the constant of

c©2016 Asia Pacific Journal of Mathematics
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contractive condition to control functions.Recently ,Sitthikul and Saejung [9] andKlin-
eam and Suanoom [4] established some fixed point results by generalizing the contrac-
tive conditions in the context of complex valued metric spaces.Very recently,Ahmad et
al.[7] obtained some new fixed point results for multi-valued mappings in the setting
of complex valued metric spaces.
Throughout this paper,N and C denote the set of all positive integers and the set of

all complex numbers respectively.
A complex number z ∈ C is an ordered pair of real numbers, whose first co-ordinate

is called Re(z) and second co-ordinate is called Im(z). Let z1, z2 ∈ C. Define apartial
order � on C as follows:
z1 � z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).
Thus z1 � z2 if one of the following holds:
(1)Re(z1) = Re(z2) and Im(z1) = Im(z2),
(2)Re(z1) < Re(z2) and Im(z1) = Im(z2),
(3)Re(z1) = Re(z2) and Im(z1) < Im(z2),
(4)Re(z1) < Re(z2) and Im(z1) < Im(z2).
We will write z1 � z2 if z1 �= z2 and one of (2), (3) and (4) is satisfed;also we will write
z1 ≺ z2 if only (4) is satisfed.

Definition 1.1. ([1]) Let X be a non empty set. A function d : X ×X → C is called a
complex valued metric on X if for all x, y, z ∈ X the following conditions are satisfied:
(i) 0 � d(x, y) and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) � d(x, z) + d(z, y).

The pair (X, d)is called a complex valued metric space.

Let {xn} be a sequence in X and x ∈ X.If for every c ∈ C with 0 � c there is n0 ∈ N

such that for all n > n0, d(xn, x) ≺ c,then {xn} is said to be convergent to x and x is
called the limit point of {xn}.We denote this by limn→∞xn = x or xn → x as n → ∞.If
for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c,
where m ∈ N ,then {xn} is called Cauchy sequence in(X, d).If every Cauchy sequence
is convergent in (X, d) then (X, d) is called a complete complexvalued metric space.
We require the follwing lemmas.
The following lemmas are very useful for further discussion.

Lemma 1.2. ([1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence

in X.Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.
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Lemma 1.3. ([1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence

in X.Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n,m→∞.

Now we follow the notations and definitions given in [7].
Let (X, d) be a complex valued metric space. We denote

s(z1) = {z2 ∈ C : z1 � z2} for z1 ∈ C and
s(a,B) =

⋃
b∈B

s(d(a, b)) =
⋃
b∈B

{z ∈ C : d(a, b) � z} for a ∈ X and B ∈ C(X).

For A,B ∈ C(X), we denote
s(A,B) =

( ⋂
a∈A

s(a,B)

)
∩
( ⋂

b∈B
s(b, A)

)
.

Remark 1.4. ([7]) Let (X, d) be a complex valued metric space and let CB(X) be a col-
lection of nonempty closed subsets of X. Let T : X → CB(X) be a multivaluedmap.For
x ∈ X and A ∈ CB(X),
define Wx(A) = {d(x, a) : a ∈ A}.
Thus , for x, y ∈ X. Wx(Ty) = {d(x, u) : u ∈ Ty}.

Definition 1.5. ([7]) Let (X, d) be a complex valued metric space.A nonempty subset
A of X is called bounded from below if there exists some z ∈ C such that z � a for all
a ∈ A.

Definition 1.6. ([7]) Let (X, d) be a complex valued metric space. A multivalued map-
ping F : X → 2C is called bounded from below if for each x ∈ X there exists zx ∈ C

such that zx � u for all u ∈ Fx.

Definition 1.7. ([7]) Let (X, d) be a complex valued metric space.The multivalued
mapping T : X → CB(X) is said to have the lower bound proerty (l.b.Property) on
(X, d) if the for any x ∈ X, the multi-valued mapping Fx : X → 2C defined by Fx(y) =

Wx(Ty) is bounded from below.That is for x, y ∈ X,there exists an element lx(Ty) ∈ C

such that lx(Ty) � u, for all u ∈ Wx(Ty), where lx(Ty) is called a lower bound of T
associated with (x, y).

Definition 1.8. ([7]) Let (X, d) be a complex valued metric space.The multivalued
mapping T : X → CB(X) is said to have the gretest lower bound proerty
(g.l.b.Property) on (X, d) if the gretest lower bound ofWx(Ty) exists in C for all x, y ∈ X.
We denote d(x, Ty) by the g.l.b.Property ofWx(Ty). That is d(x, Ty) = inf{d(x, u) : u ∈
Ty}.

Definition 1.9. ([20]) Let f : X → X,S : X → CB(X).f is said to be S-weakly com-
muting at x ∈ X if f2x ∈ Sfx.
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2. Main Results

Theorem 2.1. Let (X, d) be a complex valued metric space.

Let S, T : X → CB(X) be multi valued mappings f, g : X → X satisfying

(2.1.1)Sx ⊆ g(X),Tx ⊆ f(X),∀x ∈ X

(2.1.2)ad(fx, Ty) + bd(gy, Sx)+ cd(fx,Ty)d(gy,Sx)
1+d(fx,gy)

∈ s(Sx, Ty)

for all x, y ∈ X and a, b, c are non negative reals such that 2a + 2b < 1,

(2.1.3)f is S weakly commuting and g is T weakly commuting,

(2.1.4)f(X) is complete.

Then (f,S) and (g,T) have the same coincidence point.

Proof. Let x1 be an arbitrary point inX. Write y1 = fx1.Since Sx1 ⊆ g(X), there exists
x2 ∈ X such that y2 = gx2 ∈ Sx1.
From (2.1.2) ,we have
ad(fx1, Tx2) + bd(gx2, Sx1)+

cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(Sx1, Tx2).

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈
( ⋂

x∈Sx1

s(x, Tx2)

)
.

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(x, Tx2), ∀x ∈ Sx1.

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(gx2, Tx2).

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ ⋃

x∈Tx2

s (d(gx2, x)).

Since Tx2 ⊆ f(X),there exists some x3 ∈ X with y3 = fx3 ∈ Tx2 suchthat ad(fx1, Tx2) + bd(gx2, Sx1)+

∈ s (d(gx2, fx3)).

Hence

d(gx2, fx3) � ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
.

d(y2, y3) � ad(y1, y3) + bd(y2, y2)+
cd(y1,y3)d(y2,y2)

1+d(y1,y2)
.

|d(y2, y3)| ≤ a |d(y1, y2)|+ a |d(y2, y3)|.
|d(y2, y3)| ≤ a

1−a |d(y1, y2)|. ‘.....(1)
Now,
ad(fx3, Tx2) + bd(gx2, Sx3)+

cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, Tx2).

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
. ∈

( ⋂
y∈Tx2

s(Sx3, y)

)
.
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ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
. ∈ s(Sx3, y), ∀y ∈ Tx2

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, fx3).

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ ⋃

y∈Sx3

s (d(y, fx3)).

Since Sx3 ⊆ g(X),there exists some x4 ∈ X with y4 = gx4 ∈ Sx3 such that ad(fx3, Tx2) + bd(gx2, Sx3)+

∈ s (d(gx4, fx3)).

Hence
d(gx4, fx3) � ad(fx3, Tx2) + bd(gx2, Sx3)+

cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
.

d(y3, y4) � ad(y3, y3) + bd(y2, y4)+
cd(y3,y3)d(y2,y4)

1+d(y3,y2)
.

|d(y3, y4)| ≤ b |d(y2, y3)|+ b |d(y3, y4)|∣∣∣d(y3,y4)∣∣∣ ≤ b
1−b

∣∣∣d(y2,y3)∣∣∣. ......(2)
putting h = max

{
a

1−a ,
b

1−b
}
and we continuing in this way, we get∣∣d(yn, yn+1)

∣∣ ≤ h
∣∣d(yn−1, yn)∣∣

≤ h2
∣∣d(yn−2, yn−1)∣∣

.

.

.

≤ hn−1 |d(y1, y2)|

.

Now for m > n consider∣∣∣d(yn,ym)
∣∣∣ ≤ ∣∣∣d(yn,yn+1) + d(yn+1,yn+2) + ...... + d(ym−1,ym)

∣∣∣
≤ hn−1 + hn + .... + hm−2

∣∣∣d(y1,y2)∣∣∣
≤
[
hn−1

1−h

]
→ 0 as m, n→∞.

Thus {yn} is a Cauchy sequence in X.
Since f(X) is complete , {y2n+1} = {fx2n+1} is Cauchy,it follows that {y2n+1} converges
to u ∈ f(X).Hence there exists v ∈ X such that u = fv.
Since {yn} is a Cauchy sequence and {y2n+1} → u it follow that {y2n} → u.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, Tx2n).

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈
( ⋂

y∈Tx2n

s(Sv, y)

)
.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, y), ∀y ∈ Tx2n.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, y2n+1).
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ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ ⋃

u1∈Sv
s (d(u1, y2n+1)).

There exists vn ∈ Sv such that
ad(fv, Tx2n) + bd(gx2n, Sv)+

cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s
(
d(vn, y2n+1)

)
.

Therefore d(vn, y2n+1) � ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
.

Using g.l.b.property, we get

d(vn, y2n+1) � ad(fv, y2n+1) + bd(y2n, vn)+
cd(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

Using triangular inequality, we obtain

d(vn, y2n+1) � ad(fv, y2n+1) + bd(y2n, y2n+1) + bd(y2n+1, vn)+
cd(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

d(vn, y2n+1) � a
1−bd(fv, y2n+1) + b

1−bd(y2n, y2n+1) + c
1−b

d(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

Now consider
d(fv, vn) � d(fv, y2n+1) + d(y2n+1, vn).

� d(fv, y2n+1) + a
1−bd(fv, y2n+1) + b

1−bd(y2n, y2n+1) + c
1−b

d(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)

|d(fv, vn)| ≤ |d(fv, y2n+1)|+ a
1−b |d(fv, y2n+1)|+ b

1−b |d(y2n, y2n+1)|
+ c

1−b
|d(fv,y2n+1)||d(y2n,vn)|

|1+d(fv,y2n)| . Letting n → ∞ ,

we obtain
|d(fv, vn)| → 0 as n→∞.By Lemma 1.2,we have vn → fv as n→∞.

Since Sv is closed and {vn} ⊆ Sv, it follows that fv ∈ Sv.

Now u = fv ∈ Sv and Sv ⊆ g(X) it follows that u = fv = gw for some w ∈ X.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(Sx2n−1, Tw).

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

∈
( ⋂

y1∈Sx2n−1

s(y1, Tw)

)
.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

∈ s(y1, Tw), ∀y1 ∈ Sx2n−1.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(y2n, Tw).

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ ⋃

u1∈Tw

s (d(y2n, u
1)).

There exists some wn ∈ Tw such that

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(d(y2n, wn)).

177



d(y2n, wn) � ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

Using g.l.b.property, we obtain

d(y2n, wn) � ad(y2n−1, wn) + bd(gw, y2n)+
cd(y2n−1,wn)d(gw,y2n)

1+d(y2n−1,gw)
.

Using triangular inequality, we have
d(y2n, wn) � ad(y2n−1, y2n) + ad(y2n, wn) + bd(gw, y2n)+

cd(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

d(y2n, wn) � a
1−ad(y2n−1, y2n) + b

1−ad(gw, y2n) + c
1−a

d(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

Now consider d(gw,wn) � d(gw, y2n) + d(y2n, wn).

� d(gw, y2n) + a
1−ad(y2n−1, y2n) + b

1−ad(gw, y2n) + c
1−a

d(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.
|d(gw,wn)| ≤ |d(gw, y2n)|+ a

1−a |d(y2n−1, y2n)|+ b
1−a |d(gw, y2n)|

+ c
1−a

|d(y2n−1,wn)||d(gw,y2n)|
|1+d(y2n−1,gw)| .

Letting n→∞ we get
|d(gw,wn)| → 0 as n→∞.By Lemma 1.2, we have wn → gw as n→∞.
Since Tw is closed and {wn} ⊆ Tw, it follows that gw ∈ Tw.
We have u = fv = gw ∈ Tw.
Since f is S-weakly commuting and g is T -weakly commuting we have
f 2v ∈ Sfv ⇒ fu ∈ Su and g2w ∈ Tgw ⇒ gu ∈ Tu.
Thus the pairs (f, S) and (g, T ) have the same coincident point. �
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Abstract In this paper, we obtain a Presic type fixed point theorem for two pairs of jointly
2k-weakly compatible maps in fuzzy metric spaces.We also give an example to illustrate our main
theorem. We obtain two corollaries for three maps and two maps.

Keywords: Fuzzy metric spaces, presic type theorem, jointly 2k-weakly compatible mappings.

1 Introduction and Preliminaries

There are a number of generalizations of Banach contraction principle. One such generalization is given
by S.B.Presic [9] in 1965.
Let f : Xk → X, where k ≥ 1 is a positive integer. A point x∗ ∈ X is called a fixed point of f if

x∗ = f(x∗, x∗, · · · , x∗). Consider the k−order non linear difference equation

xn+1 = f(xn−k+1, xn−k+2, · · · , xn) for n = k − 1, k, k + 1, (1.1)

with the initial values x0, x1, x2, · · · , xk−1 ∈ X.
Equation (1.1) can be studied by means of fixed point theory in view of the fact that x ∈ X is a

solution of (1.1) if and only if x is a fixed point of f . One of the most important results in this direction
is obtained by Presic [9] in the following way. Throughout this paper,let N denote the set of all positive
integers.

Theorem 1.1. ([9]) Let (X, d) be a complete metric space, k a positive integer and f : Xk → X. Suppose
that

d(f(x1, x2, · · · , xk), f(x2, x3, · · · , xk+1)) ≤
k∑

i=1
qi d(xi, xi+1)

holds for all x1, x2, · · · , xk, xk+1 ∈ X, where qi ≥ 0 and
k∑

i=1
qi ∈ [0, 1). Then f has a unique fixed point

x∗. Moreover, for any arbitrary points x1, x2, · · · , xk+1 in X, the sequence {xn} defined by xn+k =
f(xn, xn+1, · · · , xn+k−1), for all n ∈ N converges to x∗.

Later Ciric and Presic [6] generalized the above theorem as follows.

Theorem 1.2. ([6]). Let (X, d) be a complete metric space, k a positive integer and f : Xk → X. Suppose
that

d(f(x1, x2, · · · , xk), f(x2, x3, · · · , xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k}
holds for all x1, x2, · · · , xk, xk+1 in X, where λ ∈ [0, 1). Then f has a fixed point x∗ ∈ X. Moreover, for
any arbitrary points x1, x2, · · · , xk+1 in X, the sequence {xn} defined by xn+k = f(xn, xn+1, · · · , xn+k−1),
for all n ∈ N converges to x∗. Moreover, if d(f(u, u, · · · , u), f(v, v, · · · , v)) < d(u, v) holds for all u, v ∈ X
with u �= v, then x∗ is the unique fixed point of f .

Recently Rao et al.[4,5] obtained some Presic type theorems for two and three maps in metric spaces.
Now we give the following definition of [4,5].
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Definition 1.3. Let X be a non empty set and T : X2k → X and f : X → X.The pair (f, T ) is
said to be 2k-weakly compatible if f(T (x, x, ..., x, x)) = T (fx, fx, ..., fx, fx) whenever x ∈ X such that
fx = T (x, x, ..., x, x).

Using this definition, Rao et al. [4] proved the following

Theorem 1.4. ([4]). Let (X, d) be a metric space, k a positive integer and S, T : X2k → X, f : X → X
be mappings satisfying:

(1.4.1) d(S(x1, x2, · · · , x2k), T (x2, x3, · · · , x2k+1)) ≤ λ max
1≤i≤2k

{d(fxi, fxi+1)} for all x1, x2, · · · , x2k, x2k+1

in X,
(1.4.2) d(T (y1, y2, · · · , y2k), S(y2, y3, · · · , y2k+1)) ≤ λ max

1≤i≤2k
{d(fyi, fyi+1)} for all y1, y2, · · · , y2k, y2k+1

in X, where 0 < λ < 1
(1.4.3) d(S(u, · · · , u), T (v, · · · , v)) < d(fu, fv), for all u, v ∈ X with u �= v
(1.4.4) Suppose that f(X) is complete and either (f, S) or (f, T ) is a 2k− weakly compatible pair.

Then there exists a unique point p ∈ X such that fp = p = S(p, · · · , p) = T (p, · · · , p).
Recently Murthy and Rashmi [8] defined the following function

Definition 1.5. Let φ : [0, 1] −→ [0, 1] be such that:

(i) φ is increasing and continuous function in each variable,
(ii) φ(t, t, t, ...., t) ≥ t for all t ∈ [0, 1].
Using this function,Murthy and Rashmi [8] extended Theorem 1.4 to fuzzy metric spaces as follows.

Theorem 1.6. ([8]) Let (X,M, ∗)be a fuzzy metric space and S, T : X2k → X, f : X → X be mappings
satisfying for each positive integer k, 0 < q < 1

2 and t ∈ [0,∞):
(1.6.1) M(S(x1, x2, ..., x2k−1, x2k), T (x2, x3, ..., x2k, x2k+1), qt) ≥ φ(M(fx1, fx2, t), · · · ,M(fx2k, fx2k+1, t))

for all x1, x2, ..., x2k+1 ∈ X,
(1.6.2) M(T (y1, y2, ..., y2k−1, y2k), S(y2, y3, ..., y2k, y2k+1), qt) ≥ φ(M(fy1, fy2, t), · · · ,M(fy2k, fy2k+1, t))

for all y1, y2, ..., y2k+1 ∈ X,
(1.6.3) M(S(u, u, ..., u, u), T (v, v, ..., v, v), qt) > M(fu, fv, t)

for all u, v ∈ X with u �= v.
Suppose that f(X) is complete and either (f, S) or (f, T ) is 2k-weakly compatible pair.
Then there exists a unique p ∈ X such that p = fp = S(p, p, ..., p, p) = T (p, p, ..., p, p).

In this paper, we obtain a Presic type theorem for four mappings satisfying a slight different contractive
condition in fuzzy metric spaces. We also give an example and two corollaries to our main theorem.
First we recall some basic definitions and lemmas which play crucial roles in the theory of fuzzy metric

spaces.

Definition 1.7. ([2]). A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-norm if it satisfies
the following conditions:

1. ∗ is associative and commutative,
2. ∗ is continuous,
3. a ∗ 1 = a for all a ∈ [0, 1],
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
Two typical examples of a continuous t-norm are a ∗ b = ab and a ∗ b = min{a, b}.

Definition 1.8. ([1]). A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an arbitrary (non-empty)
set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞), satisfying the following conditions for
each x, y, z ∈ X and t, s > 0,

(M1) M(x, y, t) > 0,
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(M2) M(x, y, t) = 1 if and only if x = y,
(M3) M(x, y, t) =M(y, x, t),
(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(M5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with center x ∈ X and radius
0 < r < 1 is defined by B(x, r, t) = {y ∈ X :M(x, y, t) > 1− r}.
If (X,M, ∗) is a fuzzy metric space, let τ be the set of all A ⊂ X with x ∈ A if and only if there exist

t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is a topology on X (induced by the fuzzy metric
M). This topology is Hausdorff and first countable.
A sequence {xn} in X converges to x if and only if M(xn, x, t)→ 1 as n→∞, for each t > 0. It is

called a Cauchy sequence in the sense of [7] if lim
n→∞M(xn, xn+p, t) = 1, for all t > 0 and each positive

integer p. The fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence is convergent.
Example 1.9. Let X = [0, 1] and a∗b = ab for all a, b ∈ [0, 1] and letM be the fuzzy set on X×X×(0,∞)
defined by M(x, y, t) = e−

|x−y|
t for all t > 0.Then (X,M, ∗) is a fuzzy metric space.

Lemma 1.10. ([7]). Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is non-decreasing with respect
to t, for all x, y ∈ X.

Definition 1.11. ([3]). Let (X,M, ∗) be a fuzzy metric space.Then M is said to be continuous on
X2×(0,∞) if lim

n→∞M(xn, yn, tn) =M(x, y, t), whenever a sequence {(xn, yn, tn)} in X2×(0,∞) converges
to a point (x, y, t) ∈ X2 × (0,∞).i.e. lim

n→∞M(xn, x, t) = lim
n→∞M(yn, y, t) = 1 and lim

n→∞M(x, y, tn) =
M(x, y, t).

Lemma 1.12. ([3]). Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous function on
X2 × (0,∞).
Now we state the condition (A): lim

t→∞M(x, y, t) = 1 for all x, y ∈ X.
We observed that in the proof of Theorem 1.6, the authors Murthy and Rashmi [8] inherently used

the condition(A).
Now we introduce the definition of jointly 2k-weakly compatible pairs as follows.

Definition 1.13. Let X be a nonempty set, k a positive integer and S, T : X2k → X and f, g : X → X.
The pairs (f, S) and (g, T ) are said to be jointly 2k-weakly compatible if

f(S(x, x, ..., x)) = S(fx, fx, ..., fx)

and
g(T (x, x, ..., x)) = T (gx, gx, ..., gx)

whenever there exists x ∈ X such that fx = S(x, x, ..., x) and gx = T (x, x, ..., x).

Now we give our main theorem.

2 Main Result

Throughout this section assume φ as in Definition 1.5

Theorem 2.1. Let (X,M, ∗) be a fuzzy metric space with the condition (A), k a positive integer and
S, T : X2k −→ X and f, g : X −→ X be mappings satisfying:

(2.1.1) S(X2k) ⊆ g(X), T (X2k) ⊆ f(X),

(2.1.2) M(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k), qt) ≥ φ

⎛
⎜⎜⎜⎝

M(gx1, fy1, t),M(fx2, gy2, t),
M(gx3, fy3, t),M(fx4, gy4, t),

...
M(gx2k−1, fy2k−1, t),M(fx2k, gy2k, t)

⎞
⎟⎟⎟⎠

∀x1, x2, ..., x2k, y1, y2, .., y2k ∈ X, ∀t > 0, 0 < q < 1,
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(2.1.3) (f, S) and (g, T ) are jointly 2k-weakly compatible pairs.
(2.1.4) Suppose z = fu = gu for some u ∈ X whenever there exists a sequence

{y2k+n}∞n=1 in X such that lim
n→∞ y2k+n = z ∈ X.

Then z is the unique point in X such that z = fz = gz = S(z, z, .., z, z) = T (z, z, ..., z, z).

Proof. Suppose x1, x2, ..., x2k are arbitrary points in X. From (2.1.1),we define

y2k+2n−1 = S(x2n−1, x2n, ..., x2k+2n−2) = gx2k+2n−1

y2k+2n = T (x2n, x2n+1, ..., x2k+2n−1) = fx2k+2n

for n = 1, 2, ....
Let α2n =M(fx2n, gx2n+1, qt) and α2n−1 =M(gx2n−1, fx2n, qt) for n = 1, 2, ...
Put θ = 1

q and μ = min{θ 1+
√
α1

1−√α1
, θ2

1+√α2
1−√α2

, ..., θ2k
1+√α2k
1−√α2k

}.Then θ > 1.
By the selection of μ, we have

αn ≥
(
μ− θn
μ+ θn

)2
for n = 1, 2, ..., 2k (1)

Consider

α2k+1 =M(gx2k+1, fx2k+2, qt)
=M(S(x1, x2, ..., x2k−1, x2k), T (x2, x3, ..., x2k, x2k+1), qt)
≥ φ(M(gx1, fx2, t),M(fx2, gx3, t), ...,M(fx2k, gx2k+1, t))
≥ φ(α1, α2, ..., α2k−1, α2k) , since M(x, y, .) and φ are increasing

≥ φ
((
μ− θ
μ+ θ

)2
,

(
μ− θ2
μ+ θ2

)2
, ...,

(
μ− θ2k
μ+ θ2k

)2)
from (1)

≥ φ
((
μ− θ2k
μ+ θ2k

)2
,

(
μ− θ2k
μ+ θ2k

)2
, ...,

(
μ− θ2k
μ+ θ2k

)2)

≥
(
μ− θ2k
μ+ θ2k

)2
, since φ (t, t,..., t) ≥ t

≥
(
μ− θ2k+1

μ+ θ2k+1

)2
.

Thus

α2k+1 ≥
(
μ− θ2k+1

μ+ θ2k+1

)2
(2)

Also

α2k+2 =M(fx2k+2, gx2k+3, qt)
=M(S(x3, x4, x5, x6, ..., x2k+1, x2k+2), T (x2, x3, x4, x5, ..., x2k, x2k+1), qt)
≥ φ(M(gx3, fx2, t),M(fx4, gx3, t), ..., ,M(fx2k+2, gx2k+1, t))
≥ φ(α2, α3, α4, α5, ..., α2k, α2k+1)

≥ φ
((
μ− θ2
μ+ θ2

)2
,

(
μ− θ3
μ+ θ3

)2
, ...,

(
μ− θ2k
μ+ θ2k

)2
,

(
μ− θ2k+1

μ+ θ2k+1

)2)

≥ φ
((
μ− θ2k+1

μ+ θ2k+1

)2
,

(
μ− θ2k+1

μ+ θ2k+1

)2
, ...,

(
μ− θ2k+1

μ+ θ2k+1

)2)

≥
(
μ− θ2k+1

μ+ θ2k+1

)2
≥
(
μ− θ2k+2

μ+ θ2k+2

)2
.
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Thus

α2k+2 ≥
(
μ− θ2k+2

μ+ θ2k+2

)2
(3)

Continuing in this way,we have

αn ≥
(
μ− θn
μ+ θn

)2
, n = 1, 2, 3... (4)

Now consider

M (y2k+2n−1, y2k+2n, t) ≥M (y2k+2n−1, y2k+2n, qt) , since q < 1 and M(x, y, .) is increasing

=M
(
S (x2n−1, x2n, x2n+1, ...x2k+2n−3, x2k+2n−2) ,
T (x2n, x2n+1, x2n+2, ...x2k+2n−2, x2k+2n−1) , qt

)

≥ φ

⎛
⎜⎜⎝
M(gx2n−1, fx2n, t),M(fx2n, gx2n+1, t),
M(gx2n+1, fx2n+2, t),M(fx2n+2, gx2n+3, t),
......................................................,
M(gx2k+2n−3, fx2k+2n−2, t),M(fx2k+2n−2, gx2k+2n−1, t)

⎞
⎟⎟⎠

≥ φ (α2n−1, α2n, α2n+1, ..., α2k+2n−3, α2k+2n−2) , since φ and M are increasing

≥ φ
((
μ− θ2n−1
μ+ θ2n−1

)2
,

(
μ− θ2n
μ+ θ2n

)2
, ...,

(
μ− θ2k+2n−2

μ+ θ2k+2n−2

)2)
from (4)

≥ φ
((
μ− θ2k+2n−2

μ+ θ2k+2n−2

)2
,

(
μ− θ2k+2n−2

μ+ θ2k+2n−2

)2
, ...,

(
μ− θ2k+2n−2

μ+ θ2k+2n−2

)2)

≥
(
μ− θ2k+2n−2

μ+ θ2k+2n−2

)2

≥
(
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2
.

Thus

M(y2k+2n−1, y2k+2n, t) ≥
(
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2
(5)

Also

M (y2k+2n, y2k+2n+1, t) ≥M (y2k+2n, y2k+2n+1, qt) , since q < 1 and φ is increasing

=M
(
S (x2n+1, x2n+2, x2n+3, ..., x2k+2n−1, x2k+2n) ,
T (x2n, x2n+1, x2n+2, ..., x2k+2n−2, x2k+2n−1) , qt

)
,

≥ φ

⎛
⎜⎜⎝
M(gx2n+1, fx2n, t),M(fx2n+2, gx2n+1, t),
M(gx2n+3, fx2n+2, t),M(fx2n+4, gx2n+3, t),
......................................................,
M(gx2k+2n−1, fx2k+2n−2, t),M(fx2k+2n, gx2k+2n−1, t)

⎞
⎟⎟⎠

≥ φ (α2n, α2n+1, ..., α2k+2n−2, α2k+2n−1)

≥ φ
((
μ− θ2n
μ+ θ2n

)2
,

(
μ− θ2n+1

μ+ θ2n+1

)2
, ...,

(
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2)
from (4)

≥ φ
((
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2
,

(
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2
, ...,

(
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2)

≥
(
μ− θ2k+2n−1

μ+ θ2k+2n−1

)2
, since φ(t, t, t, ..., t) ≥ t

≥
(
μ− θ2k+2n

μ+ θ2k+2n

)2
.
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Thus

M (y2k+2n, y2k+2n+1, t) ≥
(
μ− θ2k+2n

μ+ θ2k+2n

)2
(6)

Hence from (5) and (6)we have

M (y2k+n, y2k+n+1, t) ≥
(
μ− θ2k+n
μ+ θ2k+n

)2
for n = 1, 2, ... (7)

Now for n, p ∈ N , we have

M(y2k+n, y2k+n+p, t) ≥M(y2k+n, y2k+n+1,
t

p
) ∗M(y2k+n+1, y2k+n+2,

t

p
) ∗ ... ∗M

(
y2k+n+p−1, y2k+n+p,

t

p

)

≥
(
μ− θ2k+n
μ+ θ2k+n

)2
∗
(
μ− θ2k+n+1

μ+ θ2k+n+1

)2
∗ .... ∗

(
μ− θ2k+n+p−1
μ+ θ2k+n+p−1

)2
, from (7)

→ 1 ∗ 1 ∗ 1 ∗ .... ∗ 1 as n →∞
= 1.

Hence {y2k+n} is a Cauchy sequence in X.
Since X is complete,there exists z ∈ X such that y2k+n → z as n→∞.
From(2.1.4),there exists u ∈ X such that

z = fu = gu (8)
Now consider

M (S (u, u, ..., u, u) , y2k+2n, qt) =M (S (u, u, ..., u, u) , T (x2n, x2n+1, ..., x2n+2k−2, x2n+2k−1) , qt)

≥ φ
⎛
⎝M (gu, fx2n, t) ,M (fu, gx2n+1, t) ,
.............................................,
M (gu, fx2n+2k−2, t) ,M (fu, gx2k+2n−1, t)

⎞
⎠ .

Letting n→∞ and using (8),we get

M(S(u, u, , ..., u, u), fu, qt) ≥ φ(1, 1, ..., 1, 1) ≥ 1
which implies that

S(u, u, ..., u, u) = fu (9)
Similarly we can prove that

T (u, u, ..., u, u) = gu (10)
Since (f, S) and (g, T ) are jointly 2k-weakly compatible pairs, we have

fz = f(fu) = f(S(u, u, ..., u)) = S(fu, fu, ..., fu) = S(z, z, ..., z) (11)

and also
gz = T (z, z, ..., z, z) (12)

Now consider

M(fz, z, qt) =M(S(z, z, ..., z, z), T (u, u, ..., u, u), qt), from (11), (8), (10)

≥ φ

⎛
⎜⎜⎝
M(gz, fu, t),M(fz, gu, t),
M(gz, fu, t),M(fz, gu, t),
.......................................
M(gz, fu, t),M(fz, gu, t)

⎞
⎟⎟⎠

≥ φ

⎛
⎜⎜⎝
min {M(gz, z, t),M(fz, z, t)} ,
min {M (gz, z, t) ,M (fz, z, t)} ,
.....................................................
min {M (gz, z, t) ,M (fz, z, t)}

⎞
⎟⎟⎠

≥ min {M (gz, z, t) ,M (fz, z, t)} .
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Thus
M (fz, z, qt) ≥ min {M (gz, z, t) ,M (fz, z, t)} (13)

Similarly,we can show that

M (gz, z, qt) ≥ min {M (z, fz, t) ,M (z, gz, t)} (14)

Thus from (13)and (14),we have

min{M(fz, z, qt),M(gz, z, qt)} ≥ min{M(z, fz, t),M(z, gz, t)}
which inturn yields from condition(A) that

z = fz and z = gz (15)

From (11),(12)and (15),we have

z = fz = gz = S(z, z, ..., z) = T (z, z, ..., z) (16)

Suppose there exists z′ ∈ X such that

z′ = fz′ = gz′ = S(z′, z′, ..., z′, z′) = T (z′, z′, ..., z′, z′)

Then from (2.1.2) we have

M(z, z′, qt) =M(S(z, z, ..., z, z), T (z′, z′, ..., z′, z′), qt)

≥ φ

⎛
⎜⎜⎝
M (gz, fz′, t) ,M (fz, gz′, t) ,
M (gz, fz′, t) ,M (fz, gz′, t) ,
.......................................
M (gz, fz′, t) ,M (fz, gz′, t)

⎞
⎟⎟⎠

= φ (M(z, z′, t),M(z, z′, t), ...,M(z, z′, t))
≥M(z, z′, t)

From the condition(A), we have z′ = z.
Thus z is the unique point in X satisfying (16).

Now we give an example to illustrate our main Theorem 2.1.

Example 2.2. Let X = [0, 1], a ∗ b = ab,M(x, y, t) = e− |x−y|
t and k = 1.Define φ : [0, 1]2 → [0, 1] as

φ(x1, x2) = min{x1, x2}.Let S, T : X2 → X and f, g : X → X be defined as S(x, y) = 3x2+2y
72 , T (x, y) =

2x+3y2

72 , fx = x
6 and gx = x2

4 . Now for x1, x2, y1, y2 ∈ X,we have

|S(x1, x2)− T (y1, y2)| = | 3x
2
1+2x2
72 − 2y1+3y2

2
72 |

= 1
72 |3x21 − 2y1 + 2x2 − 3y22 |≤ 1
36 max{|3x21 − 2y1|, |2x2 − 3y22 |}.

Now, we have

M(S(x1, x2), T (y1, y2), 13 t) = e
− |S(x1,x2)−T (y1,y2)|

1
3 t

≥ e−
1

36
max{|3x2

1−2y1|,|2x2−3y2
2|}

t
3

= e−
max{|3x2

1−2y1|,|2x2−3y2
2|}

12t

= e−
max{|

x2
1

4 − y1
6 |,| x2

6 −
y2

2
4 |}

t

≥ min
{
e−

|
x2

1
4 − y1

6 |
t , e−

| x2
6 −

y2
2

4 |
t

}
= min{M(gx1, fy1, t),M(fx2, gy2, t)}
= φ(M(gx1, fy1, t),M(fx2, gy2, t).

Thus (2.1.2) is satisfied with q = 1
3 .

One can easily verify the remaining conditions of Theorem 2.1. Clearly 0 is the unique point in X satisfying
(16).

Advances in Analysis, Vol. 2, No. 3, July 2017 149

186



Corollary 2.3. Let (X,M, ∗) be fuzzy metric space with the condition (A) and S, T : X2k → X and
f : X → X be mappings satisfying:

(2.3.1) S(X2k) ⊆ f(X), T (X2k) ⊆ f(X),
(2.3.2) M(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k), qt) ≥ φ (M(fx1, fy1, t),M(fx2, fy2, t), ...,M (fx2k, fy2k, t))

∀x1, x2, ..., x2k, y1, y2, ..., y2k ∈ X, ∀t > 0 and 0 < q < 1,
(2.3.3) f(X) is a complete subspace of X.
(2.3.4) Either (f, S) or (f, T ) is a 2k-weakly compatible pair. Then there exists a unique u ∈ Xsuch that

u = fu = S(u, u, ..., u, u) = T (u, u, ..., u, u).

Corollary 2.4. Let (X,M, ∗) be a complete fuzzy metric space with the condition(A) and S, T : X2k → X
be mappings satisfying:

(2.4.1) M(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k), qt) ≥ φ (M (x1, y1, t) ,M (x2, y2, t) , ...,M (x2k, y2k, t))
∀x1, x2, ..., x2k, y1, y2, ..., y2k ∈ X, ∀t > 0 and 0 < q < 1.

Then there exists a unique u ∈ Xsuch that u = S(u, u, ..., u) = T (u, u, ..., u).
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UNIQUE COMMON FIXED POINT THEOREM

FOR FOUR MAPS IN

COMPLEX VALUED S− METRIC SPACES

K. P. R. Rao and Md. Mustaq Ali

Abstract. In this paper we obtain a common fixed point theorem for the

two weakly compatible pairs of mappings satisfying a contractive condition in

complex valued S-metric spaces.

1. Introduction

It is a well-known fact that the mathematical results regarding fixed points
of contraction type mappings are very useful for determining the existence and
uniqueness of solutions to various mathematical models. Over the last 40 years,
the theory of fixed points has been developed regarding the results that are related
to finding the fixed points of self and nonself nonlinear mappings in a metric space.

Several authors proved fixed point results in different types of generalized met-
ric spaces.

Azam et al. [2] introduced the concept of a complex valued metric space and
obtained sufficient conditions for the existence of common fixed points of a pair of
mappings satisfying contractive type conditions. Later several authors proved fixed
and common fixed point theorems in complex valued metric spaces, for example,
refer [1, 2, 3, 5, 13, 9, 11, 12, 14, 15].

Throughout this paper, let C denote the set of all complex numbers.
A Complex number z ∈ C is an ordered pair of real numbers, whose first co-

ordinate is called Re(z) and second co-ordinate is called Im(z). Let z1, z2 ∈ C.
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Define a partial order � on C follows:

z1 � z2 if and only if Re(z1) � Re(z2), Im(z1) � Im(z2).

Thus z1 � z2 if one of the following holds:

(1) Re(z1) = Re(z2) and Im(z1) = Im(z2),
(2) Re(z1) < Re(z2) and Im(z1) = Im(z2),
(3) Re(z1) = Re(z2) and Im(z1) < Im(z2),
(4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

Azam [2] defined the complex metric as follows:

Definition 1.1. ([2]) Let X be a non-empty set. A function d : X ×X → C
is called a complex valued metric on X if for all x, y, z ∈ X the following conditions
are satisfied:

(i) 0 � d(x, y) and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) � d(x, z) + d(z, y).

The pair (X, d) is called a complex valued metric space.

Sedghi et al. [16] introduced the concept of S− metric space as follows.

Definition 1.2. ([16]) Let X be a non-empty set. A S−metric on X is a
function S : X3 −→ [0,∞) that satisfies the following conditions for all x, y, z, a ∈
X.

(S1) S(x, y, z) = o if and only if x = y = z,
(S2) S(x, y, z) � S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S−metric space.

Following examples of S−metric space are due to[16].

Example 1.1. 1) Let X = Rn and ‖.‖ a norm on X. Then

S(x, y, z) = ‖yz − 2x‖+ ‖x + y‖
is an S−metric space.

2) Let X = Rn and ‖.‖ a norm on X. Then

S(x, y, z) = ‖x− z‖+ ‖y − z‖
is an S−metric space.

Later some authors proved fixed point results in S−metric spaces, for example
[4, 6, 8, 10, 16].

Lemma 1.1 ([16]). Let (X,S) be a S−metric space. If there exist {xn} and
{yn} such that

lim
n→∞xn = x and lim

n→∞ yn = y,

then
lim
n→∞S(xn, xn, yn) = S(x, x, y).

For {yn} = y the above lemma becomes as follows.
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Lemma 1.2. Let (X,S) be a S−metric space. If there exists {xn} such that
lim
n→∞xn = x then lim

n→∞S(xn, xn, y) = S(x, x, y).

Nabil et al. [7] introduced the concept of complex valued S− metric space as
follows.

Definition 1.3. ([7]) Let X be a non-empty set. A complex valued S-metric
on X is a function S : X3 → C that satisfies the following conditions, for all
x, y, z, a ∈ X :

(i) 0 � S(x, y, z),
(ii) S(x, y, z) = 0 if and only if x = y = z,
(iii) S(x, y, z) � S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called a complex valued S-metric space.

Example 1.2. Let X = C. Define S : C3 → C by:
S(z1, z2, z3) =

[|Re(z1)−Re(z3)|+ |Re(z2)−Re(z3)|] + i[|Im(z1)− Im(z3)|+ |Im(z2)− Im(z3)|].
Then (X,S) is a complex valued S-metric space.

Definition 1.4. ([7]) If (X,S) is called a complex valued S-metric space, then

(1) A sequence {xn} in X converges to x if and only if for all ε such that
0 ≺ ε ∈ C, there exists a natural number n0 such that for all n � n0, we
have S(xn, xn, x) ≺ ε and we denote this by lim

n→∞xn = x.

(2) A sequence {xn} in X is called a Cauchy sequence if for all ε such that
0 ≺ ε ∈ C, there exists a natural number n0 such that for all n,m � n0,
we have S(xn, xn, xm) ≺ ε.

(3) An S-metric space (X,S) is said to be complete if for every Cauchy se-
quence is convergent.

Lemma 1.3 ([7]). Let (X,S) be a complex valued S-metric space and {xn} be
a sequence in X. Then {xn} converges to x if and only if |S(xn, xn, x)| → 0 as
n→∞.

Lemma 1.4 ([7]). Let (X,S) be a complex valued S-metric space and {xn} be a
sequence in X. Then {xn} is a Cauchy sequence if and only if |S(xn, xn, xn+m)| →
0 as n→∞ and m→∞ .

Lemma 1.5 ([7]). Let (X,S) be a complex valued S-metric space. Then
S(x, x, y) = S(y, y, x) for all x, y ∈ X.

2. Main results

Recently Naval Singh et al. [13] proved the following theorem in complex
valued metric spaces as follows.

Theorem 2.1. Let (X, d) be a complete complex valued metric space and S, T :
X → X. If there exist mappings λ, μ, γ, δ : X × X × X → [0, 1) such that for all
x, y ∈ X, the following is valid

(a)
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λ(TSx, y, a) � λ(x, y, a) and λ(x, STy, a) � λ(x, y, a),

μ(TSx, y, a) � μ(x, y, a) and μ(x, STy, a) � μ(x, y, a),

γ(TSx, y, a) � γ(x, y, a) and γ(x, STy, a) � γ(x, y, a),

δ(TSx, y, a) � δ(x, y, a) and δ(x, STy, a) � δ(x, y, a);

(b)

d(Sx, Ty) � λ(x, y, a)d(x, y) + μ(x, y, a)d(x,Sx)d(y,Ty)1+d(x,y) + γ(x, y, a)d(y,Sx)d(x,Ty)1+d(x,y)

+δ(x, y, a)d(x,Sx)d(x,Ty)+d(y,Ty)d(y,Sx)1+d(x,Ty)+d(y,Sx) ;

(c) λ(x, y, a) + μ(x, y, a) + γ(x, y, a) + δ(x, y, a) < 1,

then S and T have a unique common fixed point.

In this paper we generalize the Theorem (2.1) in complex valued S−metric
spaces for four maps satisfying more general contractive condition. First we prove
a proposition which is needed to prove our main Theorem.

Proposition 2.1. Let (X,S) be a complex valued S-metric space and F,G, f, g :
X → X. Let y0 ∈ X and define the sequence {yn} by

y2n+1 = gx2n+1 = Fx2n; y2n+2 = fx2n+2 = Gx2n+1.for alln = 0, 1, 2....

Assume that there exists a mapping λ1 : X ×X ×X → [0, 1) such that
(i) λ1(Fx, y, a) � λ1(fx, y, a) and λ1(x,Gy, a) � λ1(x, gy, a),
(ii) λ1(Gx, y, a) � λ1(gx, y, a) and λ1(x, Fy, a) � λ1(x, fy, a).

fora ll x, y ∈ X and for a fixed element a ∈ X and n = 0, 1, 2, ... Then

λ1(y2n, y, a) � λ1(y0, y, a) and λ1(x, y2n+1, a) � λ1(x, y1, a), for allx, y ∈ X

.

Proof. Let x, y ∈ X and n = 0, 1, 2.... Then we have

λ1(y2n, y, a) = λ1(Gx2n−1, y, a) � λ1(gx2n−1, y, a) = λ(y2n−1, y, a) =
λ1(Fx2n−2, y, a) � λ1(fx2n−2, y, a) = λ(y2n−2, y, a) = λ1(Gx2n−3, y, a)

� λ1(gx2n−3, y, a) = λ1(y2n−3, y, a) · · · = λ1(y0, y, a).

Thus λ1(y2n, y, a) � λ1(y0, y, a).
Similarly we have

λ1(x, y2n+1, a) = λ1(x, Fx2n, a) �
λ1(x, fx2n, a) = λ1(x, y2n, a) = λ1(x,Gx2n−1, a)

� λ1(x, gx2n−1, a) = λ1(x, y2n−1, a) = λ1(x, Fx2n−2, a) � λ1(x, fx2n−2, a) =
λ1(x, y2n−2, a) · · · = λ1(x, y1, a).

Thus λ1(x, y2n+1, a) � λ1(x, y1, a). �
Theorem 2.2. Let (X,S) be a complex valued S−metric space and F,G, f, g :

X → X satisfying the conditions .

(2.2.1) GX ⊆ fXand FX ⊆ gX,

(2.2.2) The pairs (F, f) and (G, g) are weakly compatible ,
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(2.2.3) fX or gX is a complete subspace of X,

(2.2.4) If there exist mappings λ1, λ2, λ3, λ4, λ5, λ6, λ7 : X×X×X → [0, 1) such that
λn(Fx, y, a) � λn(fx, y, a); λn(Gx, y, a) � λn(gx, y, a) and
λn(x, Fy, a) � λn(x, fy, a); λn(x,Gy, a) � λn(x, gy, a), ∀n = 1, 2, 3..., 7,

for all x, y ∈ X and for a fixed element a ∈ X,

(2.2.5)

S(Fx, Fx,Gy) � λ1(fx, gy, a)S(fx, fx, gy) + λ2(fx, gy, a)S(fx, fx, Fx)

+λ3(fx, gy, a)S(gy, gy,Gy)

+λ4(fx, gy, a)[S(gy, gy, Fx) + S(fx, fx,Gy)]

+λ5(fx, gy, a)
(
S(fx,fx,Fx)S(gy,gy,Gy)

1+S(fx,fx,gy)

)

+λ6(fx, gy, a)
(
S(gy,gy,Fx)S(fx,fx,Gy)

1+S(fx,fx,gy)

)

+λ7(fx, gy, a)
(
S(fx,fx,Fx)S(fx,fx,Gy)+S(gy,gy,Gy)S(gy,gy,Fx)

1+S(fx,fx,Gy)+S(gy,gy,Fx)

)
for all x, y ∈ X and for a fixed element a ∈ X, where

(2.2.6) (λ1 + λ2 + λ3 + 2λ4 + λ5 + λ6 + λ7)(x, y, a) < 1.

Then F,G, f and g have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. We define a sequence {yn} in X
such that y2n+1 = gx2n+1 = Fx2n and y2n+2 = fx2n+2 = Gx2n+1, n = 0, 1, 2, ...
From(2.2.5) we have

S(y2n+1, y2n+1, y2n+2) = S(Fx2n, Fx2n, Gx2n+1)
� λ1(y2n, y2n+1, a)S(y2n, y2n, y2n+1) + λ2(y2n, y2n+1, a)S(y2n, y2n, y2n+1)
+λ3(y2n, y2n+1, a)S(y2n+1, y2n+1, y2n+2)
+λ4(y2n, y2n+1, a)[S(y2n+1, y2n+1, y2n+1) + S(y2n, y2n, y2n+2)]

+λ5(y2n, y2n+1, a)
(
S(y2n,y2n,y2n+1)S(y2n+1,y2n+1,y2n+2)

1+S(y2n,y2n,y2n+1)

)
+λ6(y2n, y2n+1, a)

(
S(y2n+1,y2n+1,y2n+1)S(y2n,y2n,y2n+1)

1+S(y2n,y2n,y2n+1)

)

+λ7(y2n, y2n+1, a)

⎛
⎜⎜⎝

S(y2n, y2n, y2n+1)S(y2n, y2n, y2n+2)
+S(y2n+1, y2n+1, y2n+2)S(y2n+1, y2n+1, y2n+1)

1+S(y2n,y2n,y2n+1)+S(y2n+1,y2n+1,y2n+1)

⎞
⎟⎟⎠

Since S(x, x, x) = 0, we have

|S(y2n+1, y2n+1, y2n+2)|
� λ1(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|
+λ2(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|
+λ3(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)|
+λ4(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|
+λ4(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)|
+λ5(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)|

∣∣∣ S(y2n,y2n,y2n+1)
1+S(y2n,y2n,y2n+1)

∣∣∣
+λ7(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|

∣∣∣ S(y2n,y2n,y2n+2)
1+S(y2n,y2n,y2n+2)

∣∣∣ .
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|S(y2n+1, y2n+1, y2n+2)|
� (λ1 + λ2 + λ4 + λ7)(y2n, y2n+1, a) |S(y2n, y2n, y2n+1)|

+(λ3 + λ4 + λ5)(y2n, y2n+1, a) |S(y2n+1, y2n+1, y2n+2)| .
Using Proposition (2.1), we get

|S(y2n+1, y2n+1, y2n+2)| � (λ1 + λ2 + λ4 + λ7)(y0, y1, a) |S(y2n, y2n, y2n+1)|
+(λ3 + λ4 + λ5)(y0, y1, a) |S(y2n+1, y2n+1, y2n+2)|

which in turn implies that

|S(y2n+1, y2n+1, y2n+2)| �
(

(λ1+λ2+λ4+λ7)(y0,y1,a)
1−(λ3+λ4+λ5)(y0,y1,a)

)
|S(y2n, y2n, y2n+1)| .

Let h1 =
(

(λ1+λ2+λ4+λ7)(y0,y1,a)
1−(λ3+λ4+λ5)(y0,y1,a)

)
. Thus

|S(y2n+1, y2n+1, y2n+2)| � h1 |S(y2n, y2n, y2n+1)| . ........(1)

Similarly using S(x, y, y) = S(x, x, y) and proceeding as above we can show
that

|S(y2n+2, y2n+2, y2n+3)| � h2 |S(y2n+1, y2n+1, y2n+2)|........(2)

where h2 =
(

(λ1+λ3+λ4+λ7)(y0,y1,a)
1−(λ2+λ4+λ5)(y0,y1,a)

)
.

Let h = max{h1, h2}, then 0 � h < 1, since h1, h2 ∈ [0, 1). Hence from (1) and
(2), we have |S(yn, yn, yn+1)| � h |S(yn−1, yn−1, yn)| , n = 1, 2, 3, ... Repeated use
of above inequality gives

|S(yk, yk, yk+1)| � hk |S(y0, y0, y1)| ..........(3)

→ 0 as k →∞ ...........(4)

Hence for any m > n, we have

|S(yn, yn, ym)|= 2

[ |S(yn, yn, yn+1)|+
∣∣S(yn+1, yn+1, yn+2)

∣∣+
...+

∣∣S(ym−1, ym−1, ym)
∣∣

]

= 2(h
n
+hn+1+...+hm−1) |S(y0, y0, y1)| from (3)

� 2hn

1−h |S(y0, y0, y1)|
and

|S(yn, yn, ym)| � 2hn

1− h
|S(y0, y0, y1)| → 0 as m,n→∞.

Hence {yn} is a Cauchy sequence in X.
Now suppose fX is a complete subspace of X. Since y2n+2 = fx2n+2 ∈ f(X)

and {yn} is a Cauchy sequence, there exists z ∈ f(X) such that y2n+2 → z as
n→∞. Then there exists u ∈ X such that fu = z. Thus

lim
n→∞Fx2n = lim

n→∞ gx2n+1 = lim
n→∞Gx2n+1 = lim

n→∞ fx2n+2 = z.
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Consider

S(Fu, Fu,Gx2n+1)
� λ1(fu, y2n+1, a)S(fu, fu, y2n+1)
+λ2(fu, y2n+1, a)S(fu, fu, Fu)
+λ3(fu, y2n+1, a)S(y2n+1, y2n+1, y2n+2)
+λ4(fu, y2n+1, a)[S(y2n+1, y2n+1, Fu) + S(fu, fu, y2n+2)]

+λ5(fu, y2n+1, a)
(
S(fu,fu,Fu)S(y2n+1,y2n+1,y2n+2)

1+S(fu,fu,y2n+1)

)
+λ6(fu, y2n+1, a)

(
S(y2n+1,y2n+1,Fu)S(fu,fu,y2n+2)

1+S(fu,fu,y2n+1)

)
+λ7(fu, y2n+1, a)

(
S(fu,fu,Fu)S(fu,fu,y2n+2)+S(y2n+1,y2n+1,y2n+2)S(y2n+1,y2n+1,Fu)

1+S(fu,fu,y2n+2)+S(y2n+1,y2n+1,Fu)

)

|S(Fu, Fu,Gx2n+1)|
� λ1(fu, y2n+1, a)|S(fu, fu, y2n+1)|
+λ2(fu, y2n+1, a)|S(fu, fu, Fu)|
+λ3(fu, y2n+1, a)|S(y2n+1, y2n+1, y2n+2)|
+λ4(fu, y2n+1, a)|S(y2n+1, y2n+1, Fu) + S(fu, fu, y2n+2)|
+λ5(fu, y2n+1, a)

(
|S(fu,fu,Fu)||S(y2n+1,y2n+1,y2n+2)|

|1+S(fu,fu,y2n+1)|
)

+λ6(fu, y2n+1, a)
(
|S(y2n+1,y2n+1,Fu)||S(fu,fu,y2n+2)|

|1+S(fu,fu,y2n+1)|
)

+λ7(fu, y2n+1, a)

⎛
⎜⎜⎝
|S(fu, fu, Fu)||S(fu, fu, y2n+2)|
+|S(y2n+1, y2n+1, y2n+2)||S(y2n+1, y2n+1, Fu)

|1+S(fu,fu,y2n+1)+S(y2n+1,y2n+1,Fu)|

⎞
⎟⎟⎠

Letting n −→∞ and using Lemma 1.2 and 1.5, we get

|S(Fu, Fu, z)| � λ2(z, z, a) |S(z, z, Fu)|+ λ4(z, z, a) |S(z, z, Fu)|
from(4), Lemma 1.3 (1 − (λ2 + λ4)(z, z, a)) |S(z, z, Fu)| � 0 which in turn yields
from(2.2.6) that |S(Fu, Fu, z)| � 0. Therefore |S(Fu, Fu, z)| = 0. Hence Fu = z.
Thus fu = Fu = z. Since FX ⊆ gX, there exists v ∈ X such that Fu = gv. Thus
fu = Fu = gv = z. Again from (2.2.5), we have

|S(z, z,Gv)| = |S(Fu, Fu,Gv)|
� λ1(fu, gv, a)|S(fu, fu, gv)|+ λ2(fu, gv, a)|S(fu, fu, Fu)|

+λ3(fu, gv, a)|S(gv, gv,Gv)|
+λ4(fu, gv, a)|S(gv, gv, Fu) + S(fu, fu,Gv)|
+λ5(fu, gv, a)

(
|S(fu,fu,Fu)||S(gv,gv,Gv)|

|1+S(fu,fu,gv)|
)

+λ6(fu, gv, a)
(
|S(gv,gv,Fu)||S(fu,fu,Gv)|

|1+S(fu,fu,gv)|
)

+λ7(fu, gv, a)
(
|S(fu,fu,Fu)||S(fu,fu,Gv)|+|S(gv,gv,Gv)||S(gv,gv,Fu)|

|1+S(fu,fu,Gv)+S(gv,gv,Fu)|
)

so that

|S(z, z,Gv)| � λ3(z, z, a) |S(z, z,Gv)|+ λ4(z, z, a) |S(z, z,Gv)|.
(1− (λ3 + λ4)(z, z, a)) |S(z, z,Gv)| � 0
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which in turn yields from(2.2.6) that |S(z, z,Gv)| � 0. Therefore |S(z, z,Gv)| = 0.
Hence Gv = z. Thus

Gv = z = fu = Fu = gv. ......(5)

Since (F, f) is weakly compatible, we have

fz = fFu = Ffu = Fz. .........(6)

S(Fz, Fz, z) = S(Fz, Fz,Gv)
� λ1(fz, gv, a)S(fz, fz, gv) + λ2(fz, gv, a)S(fz, fz, Fz)

+λ3(fz, gv, a)S(gv, gv,Gv)
+λ4(fz, gv, a)[S(gv, gv, Fz) + S(fz, fz,Gv)]

+λ5(fz, gv, a)
(
S(fz,fz,Fz)S(gv,gv,Gv)

1+S(fz,fz,Gv)

)
+λ6(fz, gv, a)

(
S(gv,gv,Fz)S(fz,fz,Gv)

1+S(fz,fz,Gv)

)
+λ7(fz, gv, a)

(
S(fz,fz,Fz)S(fz,fz,Gv)+S(gv,gv,Gv)S(gv,gv,Fz)

1+S(fz,fz,Gv)+S(gv,gv,Fz)

)
= λ1(Fz, z, a)S(Fz, Fz, z) + λ4(Fz, z, a)[S(z, z, Fz) + S(Fz, Fz, z)]

+λ6(Fz, z, a)
(
S(z,z,Fz)S(Fz,Fz,z)

1+S(Fz,Fz,z)

)
from(5)and (6)

|S(Fz, Fz, z)| � λ1(Fz, z, a) |S(Fz, Fz, z)|
+λ4(Fz, z, a) |S(z, z, Fz) + S(Fz, Fz, z)|
+λ6(Fz, z, a) |S(z, z, Fz)|

∣∣∣ S(Fz,Fz,z)
1+S(Fz,Fz,z)

∣∣∣ .
(1− (λ1 + 2λ4 + λ6)(Fz, z, a)) |S(Fz, Fz, z)| � 0
which in turn yields from (2.2.6) that |S(Fz, Fz, z)| � 0. Therefore |S(Fz, Fz, z)| =
0. Hence Fz = z. Thus

z = Fz = fz. .........(7)

Since the pair (G, g) is weakly compatible, we have

gz = gGv = Ggv = Gz. ......(8)

From (2.2.5)

S(z, z,Gz) = S(Fz, Fz,Gz)
� λ1(fz, gz, a)S(fz, fz, gz) + λ2(fz, gz, a)S(fz, fz, Fz)

+λ3(fz, gz, a)S(gz, gz,Gz)
+λ4(fz, gz, a)[S(gz, gz, Fz) + S(fz, fz,Gz)]

+λ5(fz, gz, a)
(
S(fz,fz,FZ)S(gz,gz,Gz)

1+S(fz,fz,gz)

)
+λ6(fz, gz, a)

(
S(gz,gz.Fz)S(fz,fz,Gz)

1+S(fz,fz,gz)

)
+λ7(fz, gz, a)

(
S(fz,fz,Fz)S(fz,fz,Gz)+S(gz,gz,Gz)S(gz,gz,Fz)

1+S(fz,fz,Gz)+S(gz,gz,Fz)

)

|S(z, z,Gz)| � λ1(z,Gz, a) |S(z, z,Gz)|
+λ4(z,Gz, a) |S(Gz,Gz, z) + S(z, z,Gz)|
+λ6(z,Gz, a) |S(Gz,Gz, z)|

∣∣∣ S(z,z,Gz)
1+S(z,z,Gz)

∣∣∣ from (7), (8)
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(1 − (λ1 + 2λ4 + λ6)(z,Gz, a)) |S(z, z,Gz)| � 0 which in turn yields from (2.2.6)
that |S(z, z,Gz)| � 0. Therefore |S(z, z,Gz)| = 0. Hence Gz = z, so that

Gz = gz = z. ..............(9)

Thus from (7) and (9), z is a common fixed point of F,G, f and g. For uniqueness,
let z∗ ∈ X be such that fz∗ = Fz∗ = z∗ = gz∗ = Gz∗.

Now from (2.2.5)

S(z, z, z∗) = S(Fz, Fz,Gz∗)
� λ1(fz, gz

∗, a)S(fz, fz, gz∗) + λ2(fz, gz
∗, a)S(fz, fz, Fz)

+λ3(fz, gz
∗, a)S(gz∗, gz∗, Gz∗)

+λ4(fz, gz
∗, a)[S(gz∗, gz∗, F z) + S(fz, fz,Gz∗)]

+λ5(fz, gz
∗, a)

(
S(fz,fz,Fz)S(gz∗,gz∗,Gz∗)

1+S(fz,fz,gz∗)

)
+λ6(fz, gz

∗, a)
(
S(gz∗,gz∗,Fz)S(fz,fz,Gz∗)

1+S(fz,fz,gz∗)

)
+λ7(fz, gz

∗, a)
(
S(fz,fz,Fz)S(fz,fz,Gz∗)+S(gz∗,gz∗,Gz∗)S(gz∗,gz∗,Fz)

1+S(fz,fz,Gz∗)+S(gz∗,gz∗,Fz)

)
.

|S(z, z, z∗)| � λ1(z, z
∗, a) |S(z, z, z∗)|+ λ4(z, z

∗, a) |S(z∗, z∗, z) + S(z, z, z∗)|
+λ6(z, z

∗, a) |S(z∗, z∗, z)|
∣∣∣ S(z,z,z∗)
1+S(z,z,z∗)

∣∣∣ .
|S(z, z, z∗)| � (λ1 + 2λ4 + λ6)(z, z

∗, a) |S(z, z, z∗)|.
(1− (λ1 +2λ4 +λ6)(z, z

∗, a)) |S(z, z, z∗)| � 0 which in turn yields from (2.2.6) that
|S(z, z, z∗)| � 0. Therfore |S(z, z, z∗)| = 0. Thus z = z∗.
Hence z is the unique common fixed point of F,G, f and g. Similarly we can prove
the theorem if gX is a complete subspace of X. �

Now wegive an example to illustrate our main Theorem 2.2.

Example 2.1. Let X = [0, 1] and S : X×X×X → C be defined by S(x, y, z) =
|x− z|+ i|y− z|. Then (X,S) is a complex valued S− metric space. Define F,G, f
and g : X → X by Fx = x

16 , Gx = x
12 , fx = x

4 and gx = x
3 , for all x ∈ X. For fixed

element a = 1
3 , define λ1, λ2, λ3, λ4, λ5, λ6, λ7 : X ×X ×X → [0, 1] by

λ1(x, y, a) = ( x40 + y
50 + a), λ2(x, y, a) = xya

10 , λ3(x, y, a) = x2y2a2

10 , λ4(x, y, a) =
x3y3a3

10 , λ5(x, y, a) = x3+y3+a3

10 , λ6(x, y, a) = x2ya3

50 , λ7(x, y, a) = xy3a2

40 ,

for all x, y ∈ X. Then
λ1(x, y, a)+λ2(x, y, a)+λ3(x, y, a)+2λ4(x, y, a)+λ5(x, y, a)+λ6(x, y, a)+λ7(x, y, a)

= ( x40 + y
50 + a) + xya

10 + x2y2a2

10 + 2(x
3y3a3

10 ) + x3+y3+a3

10 + x2ya3

50 + xy3a2

40

� ( 1
40 + 1

50 + 1
3 ) + 1

30 + 1
90 + 2

270 + 55
270 + 1

1350 + 1
360

= 3442
5400 < 1.

Hence (λ1 + λ2 + λ3 + 2λ4 + λ5 + λ6 + λ7)(x, y, a) < 1. We have

λ1(Fx, y, a) = λ1(
x

16
, y, a) = (

x

640
+

y

50
+ a)

λ1(fx, y, a) = λ1(
x

4
, y, a) = (

x

160
+

y

50
+ a).

196



130 K. P. R. RAO, MD. MUSTAQ ALI

Clearly λ1(Fx, y, a) � λ1(fx, y, a). We have

λ1(x, Fy, a) = λ1(x,
y

16
, a) = (

x

40
+

y

800
+ a)

λ1(x, fy, a) = λ1(x,
y

4
, a) = (

x

40
+

y

200
+ a).

Clearly λ1(x, Fy, a) � λ1(x, fy, a). We have

λ1(Gx, y, a) = λ1(
x

12
, y, a) = (

x

480
+

y

50
+ a)

λ1(gx, y, a) = λ1(
x

3
, y, a) = (

x

120
+

y

50
+ a).

Clearly λ1(Gx, y, a) � λ1(gx, y, a). We have

λ1(x,Gy, a) = λ1(x,
y

12
, a) = (

x

40
+

y

600
+ a)

λ1(x, gy, a) = λ1(x,
y

3
, a) = (

x

40
+

y

150
+ a).

Clearly λ1(x,Gy, a) � λ1(x, gy, a).
Similarly we can prove that

λn(Fx, y, a) � λn(fx, y, a), λn(x, Fy, a) � λn(x, fy, a)

λn(Gx, y, a) � λn(gx, y, a), λn(x,Gy, a) � λn(x, gy, a)∀n = 2, 3, 4, ...7.

Consider

|S(Fx, Fx,Gy)| = ∣∣S( x16 ,
x
16 ,

y
12 )

∣∣
= | x16 − y

12 |+ i| x16 − y
12 | = 1

4 [|x4 − y
3 |+ i|x4 − y

3 |]
< 1

3 [|x4 − y
3 |+ i|x4 − y

3 |]
� ( x

160 + y
150 + 1

3 )[|x4 − y
3 |+ i|x4 − y

3 |] = λ1(fx, gy, a)S(fx, fx, gy)

� λ1(fx, gy, a)S(fx, fx, gy) + λ2(fx, gy, a)S(fx, fx, Fx)

+λ3(fx, gy, a)S(gy, gy,Gy) + λ4(fx, gy, a)[S(gy, gy, Fx) + S(fx, fx,Gy)]

+λ5(fx, gy, a)
(
S(fx,fx,Fx)S(gy,gy,Gy)

1+S(fx,fx,gy)

)
+λ6(fx, gy, a)

(
S(gy,gy,Fx)S(fx,fx,Gy)

1+S(fx,fx,gy)

)
+λ7(fx, gy, a)

(
S(fx,fx,Fx)S(fx,fx,Gy)+S(gy,gy,Gy)S(gy,gy,Fx)

1+S(fx,fx,Gy)+S(gy,gy,Fx)

)
.

Thus (2.2.5) is satisfied.
One can easily verify the remaining conditions of Theorem 2.2. Clearly x = 0

is the unique common fixed point of F,G, f and g.
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